10,727 research outputs found

    Diffusion Causal Models for Counterfactual Estimation

    Get PDF
    We consider the task of counterfactual estimation from observational imaging data given a known causal structure. In particular, quantifying the causal effect of interventions for high-dimensional data with neural networks remains an open challenge. Herein we propose Diff-SCM, a deep structural causal model that builds on recent advances of generative energy-based models. In our setting, inference is performed by iteratively sampling gradients of the marginal and conditional distributions entailed by the causal model. Counterfactual estimation is achieved by firstly inferring latent variables with deterministic forward diffusion, then intervening on a reverse diffusion process using the gradients of an anti-causal predictor w.r.t the input. Furthermore, we propose a metric for evaluating the generated counterfactuals. We find that Diff-SCM produces more realistic and minimal counterfactuals than baselines on MNIST data and can also be applied to ImageNet data. Code is available https://github.com/vios-s/Diff-SCM.Comment: Accepted at CLeaR (Causal Learning and Reasoning) 202

    Detecting and quantifying causal associations in large nonlinear time series datasets

    Get PDF
    Identifying causal relationships and quantifying their strength from observational time series data are key problems in disciplines dealing with complex dynamical systems such as the Earth system or the human body. Data-driven causal inference in such systems is challenging since datasets are often high dimensional and nonlinear with limited sample sizes. Here, we introduce a novel method that flexibly combines linear or nonlinear conditional independence tests with a causal discovery algorithm to estimate causal networks from large-scale time series datasets. We validate the method on time series of well-understood physical mechanisms in the climate system and the human heart and using large-scale synthetic datasets mimicking the typical properties of real-world data. The experiments demonstrate that our method outperforms state-of-the-art techniques in detection power, which opens up entirely new possibilities to discover and quantify causal networks from time series across a range of research fields

    Causal Effect Inference with Deep Latent-Variable Models

    Get PDF
    Learning individual-level causal effects from observational data, such as inferring the most effective medication for a specific patient, is a problem of growing importance for policy makers. The most important aspect of inferring causal effects from observational data is the handling of confounders, factors that affect both an intervention and its outcome. A carefully designed observational study attempts to measure all important confounders. However, even if one does not have direct access to all confounders, there may exist noisy and uncertain measurement of proxies for confounders. We build on recent advances in latent variable modeling to simultaneously estimate the unknown latent space summarizing the confounders and the causal effect. Our method is based on Variational Autoencoders (VAE) which follow the causal structure of inference with proxies. We show our method is significantly more robust than existing methods, and matches the state-of-the-art on previous benchmarks focused on individual treatment effects.Comment: Published as a conference paper at NIPS 201

    Causal Confusion in Imitation Learning

    Get PDF
    Behavioral cloning reduces policy learning to supervised learning by training a discriminative model to predict expert actions given observations. Such discriminative models are non-causal: the training procedure is unaware of the causal structure of the interaction between the expert and the environment. We point out that ignoring causality is particularly damaging because of the distributional shift in imitation learning. In particular, it leads to a counter-intuitive "causal misidentification" phenomenon: access to more information can yield worse performance. We investigate how this problem arises, and propose a solution to combat it through targeted interventions---either environment interaction or expert queries---to determine the correct causal model. We show that causal misidentification occurs in several benchmark control domains as well as realistic driving settings, and validate our solution against DAgger and other baselines and ablations.Comment: Published at NeurIPS 2019 9 pages, plus references and appendice

    Telling Cause from Effect using MDL-based Local and Global Regression

    Get PDF
    We consider the fundamental problem of inferring the causal direction between two univariate numeric random variables XX and YY from observational data. The two-variable case is especially difficult to solve since it is not possible to use standard conditional independence tests between the variables. To tackle this problem, we follow an information theoretic approach based on Kolmogorov complexity and use the Minimum Description Length (MDL) principle to provide a practical solution. In particular, we propose a compression scheme to encode local and global functional relations using MDL-based regression. We infer XX causes YY in case it is shorter to describe YY as a function of XX than the inverse direction. In addition, we introduce Slope, an efficient linear-time algorithm that through thorough empirical evaluation on both synthetic and real world data we show outperforms the state of the art by a wide margin.Comment: 10 pages, To appear in ICDM1
    • …
    corecore