6,140 research outputs found

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table

    Going Deeper into Action Recognition: A Survey

    Full text link
    Understanding human actions in visual data is tied to advances in complementary research areas including object recognition, human dynamics, domain adaptation and semantic segmentation. Over the last decade, human action analysis evolved from earlier schemes that are often limited to controlled environments to nowadays advanced solutions that can learn from millions of videos and apply to almost all daily activities. Given the broad range of applications from video surveillance to human-computer interaction, scientific milestones in action recognition are achieved more rapidly, eventually leading to the demise of what used to be good in a short time. This motivated us to provide a comprehensive review of the notable steps taken towards recognizing human actions. To this end, we start our discussion with the pioneering methods that use handcrafted representations, and then, navigate into the realm of deep learning based approaches. We aim to remain objective throughout this survey, touching upon encouraging improvements as well as inevitable fallbacks, in the hope of raising fresh questions and motivating new research directions for the reader

    Co-interest Person Detection from Multiple Wearable Camera Videos

    Full text link
    Wearable cameras, such as Google Glass and Go Pro, enable video data collection over larger areas and from different views. In this paper, we tackle a new problem of locating the co-interest person (CIP), i.e., the one who draws attention from most camera wearers, from temporally synchronized videos taken by multiple wearable cameras. Our basic idea is to exploit the motion patterns of people and use them to correlate the persons across different videos, instead of performing appearance-based matching as in traditional video co-segmentation/localization. This way, we can identify CIP even if a group of people with similar appearance are present in the view. More specifically, we detect a set of persons on each frame as the candidates of the CIP and then build a Conditional Random Field (CRF) model to select the one with consistent motion patterns in different videos and high spacial-temporal consistency in each video. We collect three sets of wearable-camera videos for testing the proposed algorithm. All the involved people have similar appearances in the collected videos and the experiments demonstrate the effectiveness of the proposed algorithm.Comment: ICCV 201

    A robust and efficient video representation for action recognition

    Get PDF
    This paper introduces a state-of-the-art video representation and applies it to efficient action recognition and detection. We first propose to improve the popular dense trajectory features by explicit camera motion estimation. More specifically, we extract feature point matches between frames using SURF descriptors and dense optical flow. The matches are used to estimate a homography with RANSAC. To improve the robustness of homography estimation, a human detector is employed to remove outlier matches from the human body as human motion is not constrained by the camera. Trajectories consistent with the homography are considered as due to camera motion, and thus removed. We also use the homography to cancel out camera motion from the optical flow. This results in significant improvement on motion-based HOF and MBH descriptors. We further explore the recent Fisher vector as an alternative feature encoding approach to the standard bag-of-words histogram, and consider different ways to include spatial layout information in these encodings. We present a large and varied set of evaluations, considering (i) classification of short basic actions on six datasets, (ii) localization of such actions in feature-length movies, and (iii) large-scale recognition of complex events. We find that our improved trajectory features significantly outperform previous dense trajectories, and that Fisher vectors are superior to bag-of-words encodings for video recognition tasks. In all three tasks, we show substantial improvements over the state-of-the-art results

    Egocentric Activity Recognition with Multimodal Fisher Vector

    Full text link
    With the increasing availability of wearable devices, research on egocentric activity recognition has received much attention recently. In this paper, we build a Multimodal Egocentric Activity dataset which includes egocentric videos and sensor data of 20 fine-grained and diverse activity categories. We present a novel strategy to extract temporal trajectory-like features from sensor data. We propose to apply the Fisher Kernel framework to fuse video and temporal enhanced sensor features. Experiment results show that with careful design of feature extraction and fusion algorithm, sensor data can enhance information-rich video data. We make publicly available the Multimodal Egocentric Activity dataset to facilitate future research.Comment: 5 pages, 4 figures, ICASSP 2016 accepte
    corecore