22,319 research outputs found

    A Comparison of Classical Versus Deep Learning Techniques for Abusive Content Detection on Social Media Sites

    Get PDF
    The automated detection of abusive content on social media websites faces a variety of challenges including imbalanced training sets, the identification of an appropriate feature representation and the selection of optimal classifiers. Classifiers such as support vector machines (SVM), combined with bag of words or ngram feature representation, have traditionally dominated in text classification for decades. With the recent emergence of deep learning and word embeddings, an increasing number of researchers have started to focus on deep neural networks. In this paper, our aim is to explore cutting-edge techniques in automated abusive content detection. We use two deep learning approaches: convolutional neural networks (CNNs) and recurrent neural networks (RNNs). We apply these to 9 public datasets derived from various social media websites. Firstly, we show that word embeddings pre-trained on the same data source as the subsequent classification task improves the prediction accuracy of deep learning models. Secondly, we investigate the impact of different levels of training set imbalances on classifier types. In comparison to the traditional SVM classifier, we identify that although deep learning models can outperform the classification results of the traditional SVM classifier when the associated training dataset is seriously imbalanced, the performance of the SVM classifier can be dramatically improved through the use of oversampling, surpassing the deep learning models. Our work can inform researchers in selecting appropriate text classification strategies in the detection of abusive content, including scenarios where the training datasets suffer from class imbalance

    Pre-text Representation Transfer for Deep Learning with Limited Imbalanced Data : Application to CT-based COVID-19 Detection

    Full text link
    Annotating medical images for disease detection is often tedious and expensive. Moreover, the available training samples for a given task are generally scarce and imbalanced. These conditions are not conducive for learning effective deep neural models. Hence, it is common to 'transfer' neural networks trained on natural images to the medical image domain. However, this paradigm lacks in performance due to the large domain gap between the natural and medical image data. To address that, we propose a novel concept of Pre-text Representation Transfer (PRT). In contrast to the conventional transfer learning, which fine-tunes a source model after replacing its classification layers, PRT retains the original classification layers and updates the representation layers through an unsupervised pre-text task. The task is performed with (original, not synthetic) medical images, without utilizing any annotations. This enables representation transfer with a large amount of training data. This high-fidelity representation transfer allows us to use the resulting model as a more effective feature extractor. Moreover, we can also subsequently perform the traditional transfer learning with this model. We devise a collaborative representation based classification layer for the case when we leverage the model as a feature extractor. We fuse the output of this layer with the predictions of a model induced with the traditional transfer learning performed over our pre-text transferred model. The utility of our technique for limited and imbalanced data classification problem is demonstrated with an extensive five-fold evaluation for three large-scale models, tested for five different class-imbalance ratios for CT based COVID-19 detection. Our results show a consistent gain over the conventional transfer learning with the proposed method.Comment: Best paper at IVCN

    SleepEGAN: A GAN-enhanced Ensemble Deep Learning Model for Imbalanced Classification of Sleep Stages

    Full text link
    Deep neural networks have played an important role in automatic sleep stage classification because of their strong representation and in-model feature transformation abilities. However, class imbalance and individual heterogeneity which typically exist in raw EEG signals of sleep data can significantly affect the classification performance of any machine learning algorithms. To solve these two problems, this paper develops a generative adversarial network (GAN)-powered ensemble deep learning model, named SleepEGAN, for the imbalanced classification of sleep stages. To alleviate class imbalance, we propose a new GAN (called EGAN) architecture adapted to the features of EEG signals for data augmentation. The generated samples for the minority classes are used in the training process. In addition, we design a cost-free ensemble learning strategy to reduce the model estimation variance caused by the heterogeneity between the validation and test sets, so as to enhance the accuracy and robustness of prediction performance. We show that the proposed method can improve classification accuracy compared to several existing state-of-the-art methods using three public sleep datasets.Comment: 20 pages, 6 figure

    Uncertainty-guided Boundary Learning for Imbalanced Social Event Detection

    Full text link
    Real-world social events typically exhibit a severe class-imbalance distribution, which makes the trained detection model encounter a serious generalization challenge. Most studies solve this problem from the frequency perspective and emphasize the representation or classifier learning for tail classes. While in our observation, compared to the rarity of classes, the calibrated uncertainty estimated from well-trained evidential deep learning networks better reflects model performance. To this end, we propose a novel uncertainty-guided class imbalance learning framework - UCLSED_{SED}, and its variant - UCL-ECSED_{SED}, for imbalanced social event detection tasks. We aim to improve the overall model performance by enhancing model generalization to those uncertain classes. Considering performance degradation usually comes from misclassifying samples as their confusing neighboring classes, we focus on boundary learning in latent space and classifier learning with high-quality uncertainty estimation. First, we design a novel uncertainty-guided contrastive learning loss, namely UCL and its variant - UCL-EC, to manipulate distinguishable representation distribution for imbalanced data. During training, they force all classes, especially uncertain ones, to adaptively adjust a clear separable boundary in the feature space. Second, to obtain more robust and accurate class uncertainty, we combine the results of multi-view evidential classifiers via the Dempster-Shafer theory under the supervision of an additional calibration method. We conduct experiments on three severely imbalanced social event datasets including Events2012\_100, Events2018\_100, and CrisisLexT\_7. Our model significantly improves social event representation and classification tasks in almost all classes, especially those uncertain ones.Comment: Accepted by TKDE 202

    Deep Over-sampling Framework for Classifying Imbalanced Data

    Full text link
    Class imbalance is a challenging issue in practical classification problems for deep learning models as well as traditional models. Traditionally successful countermeasures such as synthetic over-sampling have had limited success with complex, structured data handled by deep learning models. In this paper, we propose Deep Over-sampling (DOS), a framework for extending the synthetic over-sampling method to exploit the deep feature space acquired by a convolutional neural network (CNN). Its key feature is an explicit, supervised representation learning, for which the training data presents each raw input sample with a synthetic embedding target in the deep feature space, which is sampled from the linear subspace of in-class neighbors. We implement an iterative process of training the CNN and updating the targets, which induces smaller in-class variance among the embeddings, to increase the discriminative power of the deep representation. We present an empirical study using public benchmarks, which shows that the DOS framework not only counteracts class imbalance better than the existing method, but also improves the performance of the CNN in the standard, balanced settings
    • …
    corecore