6,599 research outputs found

    Big Learning with Bayesian Methods

    Full text link
    Explosive growth in data and availability of cheap computing resources have sparked increasing interest in Big learning, an emerging subfield that studies scalable machine learning algorithms, systems, and applications with Big Data. Bayesian methods represent one important class of statistic methods for machine learning, with substantial recent developments on adaptive, flexible and scalable Bayesian learning. This article provides a survey of the recent advances in Big learning with Bayesian methods, termed Big Bayesian Learning, including nonparametric Bayesian methods for adaptively inferring model complexity, regularized Bayesian inference for improving the flexibility via posterior regularization, and scalable algorithms and systems based on stochastic subsampling and distributed computing for dealing with large-scale applications.Comment: 21 pages, 6 figure

    Generalizing Hamiltonian Monte Carlo with Neural Networks

    Full text link
    We present a general-purpose method to train Markov chain Monte Carlo kernels, parameterized by deep neural networks, that converge and mix quickly to their target distribution. Our method generalizes Hamiltonian Monte Carlo and is trained to maximize expected squared jumped distance, a proxy for mixing speed. We demonstrate large empirical gains on a collection of simple but challenging distributions, for instance achieving a 106x improvement in effective sample size in one case, and mixing when standard HMC makes no measurable progress in a second. Finally, we show quantitative and qualitative gains on a real-world task: latent-variable generative modeling. We release an open source TensorFlow implementation of the algorithm.Comment: ICLR 201

    NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport

    Full text link
    Hamiltonian Monte Carlo is a powerful algorithm for sampling from difficult-to-normalize posterior distributions. However, when the geometry of the posterior is unfavorable, it may take many expensive evaluations of the target distribution and its gradient to converge and mix. We propose neural transport (NeuTra) HMC, a technique for learning to correct this sort of unfavorable geometry using inverse autoregressive flows (IAF), a powerful neural variational inference technique. The IAF is trained to minimize the KL divergence from an isotropic Gaussian to the warped posterior, and then HMC sampling is performed in the warped space. We evaluate NeuTra HMC on a variety of synthetic and real problems, and find that it significantly outperforms vanilla HMC both in time to reach the stationary distribution and asymptotic effective-sample-size rates

    Bounding the Test Log-Likelihood of Generative Models

    Full text link
    Several interesting generative learning algorithms involve a complex probability distribution over many random variables, involving intractable normalization constants or latent variable normalization. Some of them may even not have an analytic expression for the unnormalized probability function and no tractable approximation. This makes it difficult to estimate the quality of these models, once they have been trained, or to monitor their quality (e.g. for early stopping) while training. A previously proposed method is based on constructing a non-parametric density estimator of the model's probability function from samples generated by the model. We revisit this idea, propose a more efficient estimator, and prove that it provides a lower bound on the true test log-likelihood, and an unbiased estimator as the number of generated samples goes to infinity, although one that incorporates the effect of poor mixing. We further propose a biased variant of the estimator that can be used reliably with a finite number of samples for the purpose of model comparison.Comment: 10 pages, 1 figure, 2 tables. International Conference on Learning Representations (ICLR'2014, conference track

    A Contrastive Divergence for Combining Variational Inference and MCMC

    Full text link
    We develop a method to combine Markov chain Monte Carlo (MCMC) and variational inference (VI), leveraging the advantages of both inference approaches. Specifically, we improve the variational distribution by running a few MCMC steps. To make inference tractable, we introduce the variational contrastive divergence (VCD), a new divergence that replaces the standard Kullback-Leibler (KL) divergence used in VI. The VCD captures a notion of discrepancy between the initial variational distribution and its improved version (obtained after running the MCMC steps), and it converges asymptotically to the symmetrized KL divergence between the variational distribution and the posterior of interest. The VCD objective can be optimized efficiently with respect to the variational parameters via stochastic optimization. We show experimentally that optimizing the VCD leads to better predictive performance on two latent variable models: logistic matrix factorization and variational autoencoders (VAEs).Comment: International Conference on Machine Learning (ICML 2019). 12 pages, 3 figure

    ZhuSuan: A Library for Bayesian Deep Learning

    Full text link
    In this paper we introduce ZhuSuan, a python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and deep learning. ZhuSuan is built upon Tensorflow. Unlike existing deep learning libraries, which are mainly designed for deterministic neural networks and supervised tasks, ZhuSuan is featured for its deep root into Bayesian inference, thus supporting various kinds of probabilistic models, including both the traditional hierarchical Bayesian models and recent deep generative models. We use running examples to illustrate the probabilistic programming on ZhuSuan, including Bayesian logistic regression, variational auto-encoders, deep sigmoid belief networks and Bayesian recurrent neural networks.Comment: The GitHub page is at https://github.com/thu-ml/zhusua

    Approximate Inference with Amortised MCMC

    Full text link
    We propose a novel approximate inference algorithm that approximates a target distribution by amortising the dynamics of a user-selected MCMC sampler. The idea is to initialise MCMC using samples from an approximation network, apply the MCMC operator to improve these samples, and finally use the samples to update the approximation network thereby improving its quality. This provides a new generic framework for approximate inference, allowing us to deploy highly complex, or implicitly defined approximation families with intractable densities, including approximations produced by warping a source of randomness through a deep neural network. Experiments consider image modelling with deep generative models as a challenging test for the method. Deep models trained using amortised MCMC are shown to generate realistic looking samples as well as producing diverse imputations for images with regions of missing pixels

    Learning Model Reparametrizations: Implicit Variational Inference by Fitting MCMC distributions

    Full text link
    We introduce a new algorithm for approximate inference that combines reparametrization, Markov chain Monte Carlo and variational methods. We construct a very flexible implicit variational distribution synthesized by an arbitrary Markov chain Monte Carlo operation and a deterministic transformation that can be optimized using the reparametrization trick. Unlike current methods for implicit variational inference, our method avoids the computation of log density ratios and therefore it is easily applicable to arbitrary continuous and differentiable models. We demonstrate the proposed algorithm for fitting banana-shaped distributions and for training variational autoencoders.Comment: 16 pages, 6 figure

    Denoising Adversarial Autoencoders

    Full text link
    Unsupervised learning is of growing interest because it unlocks the potential held in vast amounts of unlabelled data to learn useful representations for inference. Autoencoders, a form of generative model, may be trained by learning to reconstruct unlabelled input data from a latent representation space. More robust representations may be produced by an autoencoder if it learns to recover clean input samples from corrupted ones. Representations may be further improved by introducing regularisation during training to shape the distribution of the encoded data in latent space. We suggest denoising adversarial autoencoders, which combine denoising and regularisation, shaping the distribution of latent space using adversarial training. We introduce a novel analysis that shows how denoising may be incorporated into the training and sampling of adversarial autoencoders. Experiments are performed to assess the contributions that denoising makes to the learning of representations for classification and sample synthesis. Our results suggest that autoencoders trained using a denoising criterion achieve higher classification performance, and can synthesise samples that are more consistent with the input data than those trained without a corruption process.Comment: submitted to journa

    Advances in Variational Inference

    Full text link
    Many modern unsupervised or semi-supervised machine learning algorithms rely on Bayesian probabilistic models. These models are usually intractable and thus require approximate inference. Variational inference (VI) lets us approximate a high-dimensional Bayesian posterior with a simpler variational distribution by solving an optimization problem. This approach has been successfully used in various models and large-scale applications. In this review, we give an overview of recent trends in variational inference. We first introduce standard mean field variational inference, then review recent advances focusing on the following aspects: (a) scalable VI, which includes stochastic approximations, (b) generic VI, which extends the applicability of VI to a large class of otherwise intractable models, such as non-conjugate models, (c) accurate VI, which includes variational models beyond the mean field approximation or with atypical divergences, and (d) amortized VI, which implements the inference over local latent variables with inference networks. Finally, we provide a summary of promising future research directions
    • …
    corecore