60,424 research outputs found

    Discovering Links for Metadata Enrichment on Computer Science Papers

    Full text link
    At the very beginning of compiling a bibliography, usually only basic information, such as title, authors and publication date of an item are known. In order to gather additional information about a specific item, one typically has to search the library catalog or use a web search engine. This look-up procedure implies a manual effort for every single item of a bibliography. In this technical report we present a proof of concept which utilizes Linked Data technology for the simple enrichment of sparse metadata sets. This is done by discovering owl:sameAs links be- tween an initial set of computer science papers and resources from external data sources like DBLP, ACM and the Semantic Web Conference Corpus. In this report, we demonstrate how the link discovery tool Silk is used to detect additional information and to enrich an initial set of records in the computer science domain. The pros and cons of silk as link discovery tool are summarized in the end.Comment: 22 pages, 4 figures, 7 listings, presented at SWIB1

    Using ACL2 to Verify Loop Pipelining in Behavioral Synthesis

    Get PDF
    Behavioral synthesis involves compiling an Electronic System-Level (ESL) design into its Register-Transfer Level (RTL) implementation. Loop pipelining is one of the most critical and complex transformations employed in behavioral synthesis. Certifying the loop pipelining algorithm is challenging because there is a huge semantic gap between the input sequential design and the output pipelined implementation making it infeasible to verify their equivalence with automated sequential equivalence checking techniques. We discuss our ongoing effort using ACL2 to certify loop pipelining transformation. The completion of the proof is work in progress. However, some of the insights developed so far may already be of value to the ACL2 community. In particular, we discuss the key invariant we formalized, which is very different from that used in most pipeline proofs. We discuss the needs for this invariant, its formalization in ACL2, and our envisioned proof using the invariant. We also discuss some trade-offs, challenges, and insights developed in course of the project.Comment: In Proceedings ACL2 2014, arXiv:1406.123

    Data mining as a tool for environmental scientists

    Get PDF
    Over recent years a huge library of data mining algorithms has been developed to tackle a variety of problems in fields such as medical imaging and network traffic analysis. Many of these techniques are far more flexible than more classical modelling approaches and could be usefully applied to data-rich environmental problems. Certain techniques such as Artificial Neural Networks, Clustering, Case-Based Reasoning and more recently Bayesian Decision Networks have found application in environmental modelling while other methods, for example classification and association rule extraction, have not yet been taken up on any wide scale. We propose that these and other data mining techniques could be usefully applied to difficult problems in the field. This paper introduces several data mining concepts and briefly discusses their application to environmental modelling, where data may be sparse, incomplete, or heterogenous

    EcoCyc: fusing model organism databases with systems biology.

    Get PDF
    EcoCyc (http://EcoCyc.org) is a model organism database built on the genome sequence of Escherichia coli K-12 MG1655. Expert manual curation of the functions of individual E. coli gene products in EcoCyc has been based on information found in the experimental literature for E. coli K-12-derived strains. Updates to EcoCyc content continue to improve the comprehensive picture of E. coli biology. The utility of EcoCyc is enhanced by new tools available on the EcoCyc web site, and the development of EcoCyc as a teaching tool is increasing the impact of the knowledge collected in EcoCyc
    corecore