75 research outputs found

    SE-shapelets: Semi-supervised Clustering of Time Series Using Representative Shapelets

    Full text link
    Shapelets that discriminate time series using local features (subsequences) are promising for time series clustering. Existing time series clustering methods may fail to capture representative shapelets because they discover shapelets from a large pool of uninformative subsequences, and thus result in low clustering accuracy. This paper proposes a Semi-supervised Clustering of Time Series Using Representative Shapelets (SE-Shapelets) method, which utilizes a small number of labeled and propagated pseudo-labeled time series to help discover representative shapelets, thereby improving the clustering accuracy. In SE-Shapelets, we propose two techniques to discover representative shapelets for the effective clustering of time series. 1) A \textit{salient subsequence chain} (SSCSSC) that can extract salient subsequences (as candidate shapelets) of a labeled/pseudo-labeled time series, which helps remove massive uninformative subsequences from the pool. 2) A \textit{linear discriminant selection} (LDSLDS) algorithm to identify shapelets that can capture representative local features of time series in different classes, for convenient clustering. Experiments on UCR time series datasets demonstrate that SE-shapelets discovers representative shapelets and achieves higher clustering accuracy than counterpart semi-supervised time series clustering methods

    A review on distance based time series classification

    Get PDF
    Time series classification is an increasing research topic due to the vast amount of time series data that is being created over a wide variety of fields. The particularity of the data makes it a challenging task and different approaches have been taken, including the distance based approach. 1-NN has been a widely used method within distance based time series classification due to its simplicity but still good performance. However, its supremacy may be attributed to being able to use specific distances for time series within the classification process and not to the classifier itself. With the aim of exploiting these distances within more complex classifiers, new approaches have arisen in the past few years that are competitive or which outperform the 1-NN based approaches. In some cases, these new methods use the distance measure to transform the series into feature vectors, bridging the gap between time series and traditional classifiers. In other cases, the distances are employed to obtain a time series kernel and enable the use of kernel methods for time series classification. One of the main challenges is that a kernel function must be positive semi-definite, a matter that is also addressed within this review. The presented review includes a taxonomy of all those methods that aim to classify time series using a distance based approach, as well as a discussion of the strengths and weaknesses of each method.TIN2016-78365-

    Contributions to Time Series Classification: Meta-Learning and Explainability

    Get PDF
    This thesis includes 3 contributions of different types to the area of supervised time series classification, a growing field of research due to the amount of time series collected daily in a wide variety of domains. In this context, the number of methods available for classifying time series is increasing, and the classifiers are becoming more and more competitive and varied. Thus, the first contribution of the thesis consists of proposing a taxonomy of distance-based time series classifiers, where an exhaustive review of the existing methods and their computational costs is made. Moreover, from the point of view of a non-expert user (even from that of an expert), choosing a suitable classifier for a given problem is a difficult task. The second contribution, therefore, deals with the recommendation of time series classifiers, for which we will use a meta-learning approach. Finally, the third contribution consists of proposing a method to explain the prediction of time series classifiers, in which we calculate the relevance of each region of a series in the prediction. This method of explanation is based on perturbations, for which we will consider specific and realistic transformations for the time series.BES-2016-07689

    Contributions to Time Series Classification: Meta-Learning and Explainability

    Get PDF
    141 p.La presente tesis incluye 3 contribuciones de diferentes tipos al área de la clasificación supervisada de series temporales, un campo en auge por la cantidad de series temporales recolectadas día a día en una gran variedad en ámbitos. En este contexto, la cantidad de métodos disponibles para clasificar series temporales es cada vez más grande, siendo los clasificadores cada vez más competitivos y variados. De esta manera, la primera contribución de la tesis consiste en proponer una taxonomía de los clasificadores de series temporales basados en distancias, donde se hace una revisión exhaustiva de los métodos existentes y sus costes computacionales. Además, desde el punto de vista de un/a usuario/a no experto/a (incluso desde la de un/a experto/a), elegir un clasificador adecuado para un problema concreto es una tarea difícil. En la segunda contribución, por tanto, se aborda la recomendación de clasificadores de series temporales, para lo que usaremos un enfoque basado en el meta-aprendizaje. Por último, la tercera contribución consiste en proponer un método para explicar la predicción de los clasificadores de series temporales, en el que calculamos la relevancia de cada región de una serie en la predicción. Este método de explicación está basado en perturbaciones, para lo que consideraremos transformaciones específicas y realistas para las series temporales
    • …
    corecore