496 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Validation of trajectory planning strategies for automated driving under cooperative, urban, and interurban scenarios.

    Get PDF
    149 p.En esta Tesis se estudia, diseña e implementa una arquitectura de control para vehículos automatizados de forma dual, que permite realizar pruebas en simulación y en vehículos reales con los mínimos cambios posibles. La arquitectura descansa sobre seis módulos: adquisición de información de sensores, percepción del entorno, comunicaciones e interacción con otros agentes, decisión de maniobras, control y actuación, además de la generación de mapas en el módulo de decisión, que utiliza puntos simples para la descripción de las estructuras de la ruta (rotondas, intersecciones, tramos rectos y cambios de carril)Tecnali

    Analysis and simulation of emergent architectures for internet of things

    Get PDF
    The Internet of Things (IoT) promises a plethora of new services and applications supported by a wide range of devices that includes sensors and actuators. To reach its potential IoT must break down the silos that limit applications' interoperability and hinder their manageability. These silos' result from existing deployment techniques where each vendor set up its own infrastructure, duplicating the hardware and increasing the costs. Fog Computing can serve as the underlying platform to support IoT applications thus avoiding the silos'. Each application becomes a system formed by IoT devices (i.e. sensors, actuators), an edge infrastructure (i.e. Fog Computing) and the Cloud. In order to improve several aspects of human lives, different systems can interact to correlate data obtaining functionalities not achievable by any of the systems in isolation. Then, we can analyze the IoT as a whole system rather than a conjunction of isolated systems. Doing so leads to the building of Ultra-Large Scale Systems (ULSS), an extension of the concept of Systems of Systems (SoS), in several verticals including Autonomous Vehicles, Smart Cities, and Smart Grids. The scope of ULSS is large in the number of things and complex in the variety of applications, volume of data, and diversity of communication patterns. To handle this scale and complexity in this thesis we propose Hierarchical Emergent Behaviors (HEB), a paradigm that builds on the concepts of emergent behavior and hierarchical organization. Rather than explicitly program all possible situations in the vast space of ULSS scenarios, HEB relies on emergent behaviors induced by local rules that define the interactions of the "things" between themselves and also with their environment. We discuss the modifications to classical IoT architectures required by HEB, as well as the new challenges. Once these challenges such as scalability and manageability are addressed, we can illustrate HEB's usefulness dealing with an IoT-based ULSS through a case study based on Autonomous Vehicles (AVs). To this end we design and analyze well-though simulations that demonstrate its tremendous potential since small modifications to the basic set of rules induce different and interesting behaviors. Then we design a set of primitives to perform basic maneuver such as exiting a platoon formation and maneuvering in anticipation of obstacles beyond the range of on-board sensors. These simulations also evaluate the impact of a HEB deployment assisted by Fog nodes to enlarge the informational scope of vehicles. To conclude we develop a design methodology to build, evaluate, and run HEB-based solutions for AVs. We provide architectural foundations for the second level and its implications in major areas such as communications. These foundations are then validated through simulations that incorporate new rules, obtaining valuable experimental observations. The proposed architecture has a tremendous potential to solve the scalability issue found in ULSS, enabling IoT deployments to reach its true potential.El Internet de las Cosas (IoT) promete una plétora de nuevos servicios y aplicaciones habilitadas por una amplia gama de dispositivos que incluye sensores y actuadores. Para alcanzar su potencial, IoT debe superar los silos que limitan la interoperabilidad de las aplicaciones y dificultan su administración. Estos silos son el resultado de las técnicas de implementación existentes en las que cada proveedor instala su propia infraestructura y duplica el hardware, incrementando los costes. Fog Computing puede servir como la plataforma subyacente que soporte aplicaciones del IoT evitando así los silos. Cada aplicación se convierte en un sistema formado por dispositivos IoT (por ejemplo sensores y actuadores), una infraestructura (como Fog Computing) y la nube. Con el fin de mejorar varios aspectos de la vida humana, diferentes sistemas pueden interactuar para correlacionar datos obteniendo funcionalidades que no pueden lograrse por ninguno de los sistemas de forma aislada. Entonces, podemos analizar el IoT como un único sistema en lugar de una conjunción de sistemas aislados. Esta perspectiva conduce a la construcción de Ultra-Large Scale Systems (ULSS), una extensión del concepto de Systems of Systems (SoS), en varios verticales, incluidos los vehículos autónomos, Smart Cities y Smart Grids. El alcance de ULSS es vasto debido a la cantidad de dispositivos y complejo en la variedad de aplicaciones, volumen de datos y diversidad de patrones de comunicación. Para manejar esta escala y complejidad, en esta tesis proponemos Hierarchical Emergent Behaviors (HEB), un paradigma que se basa en los conceptos de comportamientos emergente y organización jerárquica. En lugar de programar explícitamente todas las situaciones posibles en el vasto espacio de escenarios presentes en los ULSS, HEB se basa en comportamientos emergentes inducidos por reglas locales que definen las interacciones de las "cosas" entre ellas y también con su entorno. Discutimos las modificaciones a las arquitecturas clásicas de IoT requeridas por HEB, así como los nuevos desafíos. Una vez que se abordan estos desafíos, como la escalabilidad y la capacidad de administración, podemos ilustrar la utilidad de HEB cuando se ocupa de un ULSS basado en IoT a través de un caso de estudio basado en Vehículos Autónomos (AV). Con este fin, diseñamos y analizamos simulaciones que demuestran su enorme potencial, ya que pequeñas modificaciones en el conjunto básico de reglas inducen comportamientos diferentes e interesantes. Luego, diseñamos un conjunto de primitivas para realizar una maniobra básica, como salir de un pelotón y maniobrar en anticipación de obstáculos más allá del alcance de los sensores de a bordo. Estas simulaciones también evalúan el impacto de una implementación de HEB asistida por nodos de Fog Computing para ampliar el alcance sensorial de los vehículos. Para concluir, desarrollamos una metodología de diseño para construir, evaluar y ejecutar soluciones basadas en HEB para AV. Brindamos fundamentos arquitectónicos para el segundo nivel de HEB y sus implicaciones en áreas importantes como las comunicaciones. Estas bases se validan a través de simulaciones que incorporan nuevas reglas, obteniendo valiosas observaciones experimentales. La arquitectura propuesta tiene un enorme potencial para resolver el problema de escalabilidad que presentan los ULSS, permitiendo que las implementaciones de IoT alcancen su verdadero potencial.Postprint (published version

    Analysis and simulation of emergent architectures for internet of things

    Get PDF
    The Internet of Things (IoT) promises a plethora of new services and applications supported by a wide range of devices that includes sensors and actuators. To reach its potential IoT must break down the silos that limit applications' interoperability and hinder their manageability. These silos' result from existing deployment techniques where each vendor set up its own infrastructure, duplicating the hardware and increasing the costs. Fog Computing can serve as the underlying platform to support IoT applications thus avoiding the silos'. Each application becomes a system formed by IoT devices (i.e. sensors, actuators), an edge infrastructure (i.e. Fog Computing) and the Cloud. In order to improve several aspects of human lives, different systems can interact to correlate data obtaining functionalities not achievable by any of the systems in isolation. Then, we can analyze the IoT as a whole system rather than a conjunction of isolated systems. Doing so leads to the building of Ultra-Large Scale Systems (ULSS), an extension of the concept of Systems of Systems (SoS), in several verticals including Autonomous Vehicles, Smart Cities, and Smart Grids. The scope of ULSS is large in the number of things and complex in the variety of applications, volume of data, and diversity of communication patterns. To handle this scale and complexity in this thesis we propose Hierarchical Emergent Behaviors (HEB), a paradigm that builds on the concepts of emergent behavior and hierarchical organization. Rather than explicitly program all possible situations in the vast space of ULSS scenarios, HEB relies on emergent behaviors induced by local rules that define the interactions of the "things" between themselves and also with their environment. We discuss the modifications to classical IoT architectures required by HEB, as well as the new challenges. Once these challenges such as scalability and manageability are addressed, we can illustrate HEB's usefulness dealing with an IoT-based ULSS through a case study based on Autonomous Vehicles (AVs). To this end we design and analyze well-though simulations that demonstrate its tremendous potential since small modifications to the basic set of rules induce different and interesting behaviors. Then we design a set of primitives to perform basic maneuver such as exiting a platoon formation and maneuvering in anticipation of obstacles beyond the range of on-board sensors. These simulations also evaluate the impact of a HEB deployment assisted by Fog nodes to enlarge the informational scope of vehicles. To conclude we develop a design methodology to build, evaluate, and run HEB-based solutions for AVs. We provide architectural foundations for the second level and its implications in major areas such as communications. These foundations are then validated through simulations that incorporate new rules, obtaining valuable experimental observations. The proposed architecture has a tremendous potential to solve the scalability issue found in ULSS, enabling IoT deployments to reach its true potential.El Internet de las Cosas (IoT) promete una plétora de nuevos servicios y aplicaciones habilitadas por una amplia gama de dispositivos que incluye sensores y actuadores. Para alcanzar su potencial, IoT debe superar los silos que limitan la interoperabilidad de las aplicaciones y dificultan su administración. Estos silos son el resultado de las técnicas de implementación existentes en las que cada proveedor instala su propia infraestructura y duplica el hardware, incrementando los costes. Fog Computing puede servir como la plataforma subyacente que soporte aplicaciones del IoT evitando así los silos. Cada aplicación se convierte en un sistema formado por dispositivos IoT (por ejemplo sensores y actuadores), una infraestructura (como Fog Computing) y la nube. Con el fin de mejorar varios aspectos de la vida humana, diferentes sistemas pueden interactuar para correlacionar datos obteniendo funcionalidades que no pueden lograrse por ninguno de los sistemas de forma aislada. Entonces, podemos analizar el IoT como un único sistema en lugar de una conjunción de sistemas aislados. Esta perspectiva conduce a la construcción de Ultra-Large Scale Systems (ULSS), una extensión del concepto de Systems of Systems (SoS), en varios verticales, incluidos los vehículos autónomos, Smart Cities y Smart Grids. El alcance de ULSS es vasto debido a la cantidad de dispositivos y complejo en la variedad de aplicaciones, volumen de datos y diversidad de patrones de comunicación. Para manejar esta escala y complejidad, en esta tesis proponemos Hierarchical Emergent Behaviors (HEB), un paradigma que se basa en los conceptos de comportamientos emergente y organización jerárquica. En lugar de programar explícitamente todas las situaciones posibles en el vasto espacio de escenarios presentes en los ULSS, HEB se basa en comportamientos emergentes inducidos por reglas locales que definen las interacciones de las "cosas" entre ellas y también con su entorno. Discutimos las modificaciones a las arquitecturas clásicas de IoT requeridas por HEB, así como los nuevos desafíos. Una vez que se abordan estos desafíos, como la escalabilidad y la capacidad de administración, podemos ilustrar la utilidad de HEB cuando se ocupa de un ULSS basado en IoT a través de un caso de estudio basado en Vehículos Autónomos (AV). Con este fin, diseñamos y analizamos simulaciones que demuestran su enorme potencial, ya que pequeñas modificaciones en el conjunto básico de reglas inducen comportamientos diferentes e interesantes. Luego, diseñamos un conjunto de primitivas para realizar una maniobra básica, como salir de un pelotón y maniobrar en anticipación de obstáculos más allá del alcance de los sensores de a bordo. Estas simulaciones también evalúan el impacto de una implementación de HEB asistida por nodos de Fog Computing para ampliar el alcance sensorial de los vehículos. Para concluir, desarrollamos una metodología de diseño para construir, evaluar y ejecutar soluciones basadas en HEB para AV. Brindamos fundamentos arquitectónicos para el segundo nivel de HEB y sus implicaciones en áreas importantes como las comunicaciones. Estas bases se validan a través de simulaciones que incorporan nuevas reglas, obteniendo valiosas observaciones experimentales. La arquitectura propuesta tiene un enorme potencial para resolver el problema de escalabilidad que presentan los ULSS, permitiendo que las implementaciones de IoT alcancen su verdadero potencial

    Analysis and simulation of emergent architectures for internet of things

    Get PDF
    The Internet of Things (IoT) promises a plethora of new services and applications supported by a wide range of devices that includes sensors and actuators. To reach its potential IoT must break down the silos that limit applications' interoperability and hinder their manageability. These silos' result from existing deployment techniques where each vendor set up its own infrastructure, duplicating the hardware and increasing the costs. Fog Computing can serve as the underlying platform to support IoT applications thus avoiding the silos'. Each application becomes a system formed by IoT devices (i.e. sensors, actuators), an edge infrastructure (i.e. Fog Computing) and the Cloud. In order to improve several aspects of human lives, different systems can interact to correlate data obtaining functionalities not achievable by any of the systems in isolation. Then, we can analyze the IoT as a whole system rather than a conjunction of isolated systems. Doing so leads to the building of Ultra-Large Scale Systems (ULSS), an extension of the concept of Systems of Systems (SoS), in several verticals including Autonomous Vehicles, Smart Cities, and Smart Grids. The scope of ULSS is large in the number of things and complex in the variety of applications, volume of data, and diversity of communication patterns. To handle this scale and complexity in this thesis we propose Hierarchical Emergent Behaviors (HEB), a paradigm that builds on the concepts of emergent behavior and hierarchical organization. Rather than explicitly program all possible situations in the vast space of ULSS scenarios, HEB relies on emergent behaviors induced by local rules that define the interactions of the "things" between themselves and also with their environment. We discuss the modifications to classical IoT architectures required by HEB, as well as the new challenges. Once these challenges such as scalability and manageability are addressed, we can illustrate HEB's usefulness dealing with an IoT-based ULSS through a case study based on Autonomous Vehicles (AVs). To this end we design and analyze well-though simulations that demonstrate its tremendous potential since small modifications to the basic set of rules induce different and interesting behaviors. Then we design a set of primitives to perform basic maneuver such as exiting a platoon formation and maneuvering in anticipation of obstacles beyond the range of on-board sensors. These simulations also evaluate the impact of a HEB deployment assisted by Fog nodes to enlarge the informational scope of vehicles. To conclude we develop a design methodology to build, evaluate, and run HEB-based solutions for AVs. We provide architectural foundations for the second level and its implications in major areas such as communications. These foundations are then validated through simulations that incorporate new rules, obtaining valuable experimental observations. The proposed architecture has a tremendous potential to solve the scalability issue found in ULSS, enabling IoT deployments to reach its true potential.El Internet de las Cosas (IoT) promete una plétora de nuevos servicios y aplicaciones habilitadas por una amplia gama de dispositivos que incluye sensores y actuadores. Para alcanzar su potencial, IoT debe superar los silos que limitan la interoperabilidad de las aplicaciones y dificultan su administración. Estos silos son el resultado de las técnicas de implementación existentes en las que cada proveedor instala su propia infraestructura y duplica el hardware, incrementando los costes. Fog Computing puede servir como la plataforma subyacente que soporte aplicaciones del IoT evitando así los silos. Cada aplicación se convierte en un sistema formado por dispositivos IoT (por ejemplo sensores y actuadores), una infraestructura (como Fog Computing) y la nube. Con el fin de mejorar varios aspectos de la vida humana, diferentes sistemas pueden interactuar para correlacionar datos obteniendo funcionalidades que no pueden lograrse por ninguno de los sistemas de forma aislada. Entonces, podemos analizar el IoT como un único sistema en lugar de una conjunción de sistemas aislados. Esta perspectiva conduce a la construcción de Ultra-Large Scale Systems (ULSS), una extensión del concepto de Systems of Systems (SoS), en varios verticales, incluidos los vehículos autónomos, Smart Cities y Smart Grids. El alcance de ULSS es vasto debido a la cantidad de dispositivos y complejo en la variedad de aplicaciones, volumen de datos y diversidad de patrones de comunicación. Para manejar esta escala y complejidad, en esta tesis proponemos Hierarchical Emergent Behaviors (HEB), un paradigma que se basa en los conceptos de comportamientos emergente y organización jerárquica. En lugar de programar explícitamente todas las situaciones posibles en el vasto espacio de escenarios presentes en los ULSS, HEB se basa en comportamientos emergentes inducidos por reglas locales que definen las interacciones de las "cosas" entre ellas y también con su entorno. Discutimos las modificaciones a las arquitecturas clásicas de IoT requeridas por HEB, así como los nuevos desafíos. Una vez que se abordan estos desafíos, como la escalabilidad y la capacidad de administración, podemos ilustrar la utilidad de HEB cuando se ocupa de un ULSS basado en IoT a través de un caso de estudio basado en Vehículos Autónomos (AV). Con este fin, diseñamos y analizamos simulaciones que demuestran su enorme potencial, ya que pequeñas modificaciones en el conjunto básico de reglas inducen comportamientos diferentes e interesantes. Luego, diseñamos un conjunto de primitivas para realizar una maniobra básica, como salir de un pelotón y maniobrar en anticipación de obstáculos más allá del alcance de los sensores de a bordo. Estas simulaciones también evalúan el impacto de una implementación de HEB asistida por nodos de Fog Computing para ampliar el alcance sensorial de los vehículos. Para concluir, desarrollamos una metodología de diseño para construir, evaluar y ejecutar soluciones basadas en HEB para AV. Brindamos fundamentos arquitectónicos para el segundo nivel de HEB y sus implicaciones en áreas importantes como las comunicaciones. Estas bases se validan a través de simulaciones que incorporan nuevas reglas, obteniendo valiosas observaciones experimentales. La arquitectura propuesta tiene un enorme potencial para resolver el problema de escalabilidad que presentan los ULSS, permitiendo que las implementaciones de IoT alcancen su verdadero potencial.Postprint (published version

    Centralized learning and planning : for cognitive robots operating in human domains

    Get PDF

    Path Planning and Performance Evaluation Strategies for Marine Robotic Systems

    Get PDF
    The field of marine robotics offers many new capabilities for completing dangerous missions such as deep-sea exploration and underwater demining. The harshness of marine environments, however, means that without effective onboard decision-making, vehicle loss or mission failure are likely. Thus, to enable more autonomous operation while building trust that these systems will perform as expected, this thesis develops improved path planning and testing strategies for two different types of marine robotic platforms. The first portion of the research focuses on improved environmental data collection with an autonomous underwater vehicle (AUV). Gaussian process-based modeling is combined with informative path planning to explore an environment, while preferentially collecting data in regions of interest that exhibit extreme sensory measurements. The performance of this adaptive data sampling framework with a torpedo-style AUV is studied in both simulation and field experiments. Results show that the proposed methodology is able to be fielded on an operational platform and collect measurements in regions of interest without sacrificing overall model fidelity of the full sampling area. The second portion of the research then focuses on autonomous surface vessel (ASV) navigation that must comply with international collision avoidance standards and basic ship handling principles. The approach introduces a novel quantification of good seamanship that is used within an ASV path planner to minimize the collision risk with other vessels. This approach generalizes well to both single-vessel and multi-vessel encounters by avoiding rule-based conditions. The performance of this ASV planning strategy is evaluated in simulation against other baseline planners, and the results of on-water testing with a 29-ft ASV demonstrate that the approach is scalable to real systems. Beyond developing improved path planning frameworks, this research also explores methods for improved testing and evaluation of black-box autonomous systems. Statistical learning techniques such as adaptive scenario generation and unsupervised clustering are used to extract the failure modes of the autonomy from large-scale simulation datasets. Subsequently, changes in these failure modes are tracked in a novel form of performance-based regression testing. The effectiveness of this testing framework is demonstrated on the aforementioned ASV planner by discovering several types of unexpected failures

    Real-Time Obstacle and Collision Avoidance System for Fixed-Wing Unmanned Aerial Systems

    Get PDF
    The motivation for the research presented in this dissertation is to provide a two-fold solution to the problem of non-cooperative reactive mid-air threat avoidance for fixed-wing unmanned aerial systems. The first phase is an offline UAS trajectory planning designed for an altitude-specific mission. The second phase leans on the results produced during the first phase to provide intelligent, real-time, reactive mid-air threat avoidance logic. That real-time operating logic provides a given fixed-wing UAS with local threat awareness so it can get a feel for the danger represented by a potential threat before using results produced during the first phase to require aircraft rerouting. The first original contribution of this research is the Advanced Mapping and Waypoint Generator (AMWG), a piece of software which processes publicly available elevation data in order to only retain the information necessary for a given altitude-specific flight mission. The AMWG is what makes systematic offline trajectory possible. The AMWG first creates altitude groups in order to discard elevations points which are not relevant to a specific mission because of the altitude flown at. Those groups referred to as altitude layers can in turn be reused if the original layer becomes unsafe for the altitude range in use, and the other layers are used for altitude re-scheduling in order to update the current altitude layer to a safer layer. Each layer is bounded by a lower and higher altitude, within which terrain contours are considered constant according to a conservative approach involving the principle of natural erosion. The AMWG then proceeds to obstacle contours extraction using threshold and edge detection vision algorithms. A simplification of those obstacle contours and their corresponding free space zones counterparts is performed using a fixed -tolerance Douglas-Peucker algorithm. This simplification allows free space zones to be described by vectors instead of point clouds, which enables UAS point location. The resulting geometry is then processed through a vertical trapezoidal decomposition where for each vertex defining a contour a vertical line is drawn, and the results of this decomposition is a set of trapezoidal cells. The cells corresponding to obstacle contours are then removed from the original trapezoidal decomposition in order to solely retain the obstacle-free trapezoidal cells. After decomposition, cells sharing part of a common edge are considered from a graph theory perspective so it becomes possible to list all acyclic paths between two cells by applying a depth first search (DFS) algorithm. The final product of the AWMG is a network of connected free space trapezoidal cells with embedded connectivity information referred to as the Synthetic Terrain Avoidance (STA network). The walls of the trapezoidal cells are then extruded as the AWMG essentially approximates a three-dimensional world by considering it as a stratification of two-dimensional layers, but the real-time phase needs 3D support. Using the graph conceptual view and the depth first search algorithm, all the connected cell sequences joining the departure to the arrival cell can be listed, a capability which is used during aircraft rerouting. By connecting two adjacent cells' centroids to their common midpoint located on the shared edge, the resulting flying legs remain within the two cells. The next step for paths between two cells is to be converted into flyable paths, and the conversion uses main and fallback methods to achieve that. The preferred method is the closed-form Dubins paths method involving the design of sequences of arc circle-straight line-arc circle (CLC) in order to account for the minimum radius turn constrain of the UAS. An additional geometric transformation is developed and applied to the initial waypoints used in the Dubins method so the flying leg directions are respected which is not possible by using the Dubins method alone. When consecutive waypoints are too close from one another, a condition called the Dubins condition cannot be respected, and the UAS trajectory design switches to the numerical integration of a system of ordinary differential equations accounting for the minimum turning constraint. Using the Dubins method and the ODE method makes it possible for the AWMG to design flyable offline trajectories accounting for the lateral dynamic of the fixed-wing UAS. The second original contribution of this research is the development and demonstration of the Double Dispersion reduction RRT (DDRRT), an algorithm which employs two new developed logic schemes respectively referred to as Punctual Dispersion Reduction (PDR), and Spatial Dispersion Reduction exploration (SDR). The DDRRT is employed during the real-time in-flight phase where it initially assumes a perfect terrain and no unpredictable threat, consequently following a 100% adaptive goal biasing toward the next waypoint in its list. When a threat such as an unpredicted obstacle is detected, the (PDR) acknowledges the fact that the DDRRT tree branches have met an obstacle and the its goal-biasing toward the next waypoint is decreased. If the PDR keeps decreasing, the DDRRT develops awareness of its surrounding obstacles by relaxing its PDR and switching to SDR which has the effect of increasing the dispersion of its branches, but keeping their extension bounded by the cell containing the last good position of the UAS, Csafe. If a number of branches reach a limit proportional to the Csafe and its relative area, then the STA network is queried for alternative rerouting. The two phases provide real-time reactive mid - air threat avoidance scenarios with the ability for a UAS to develop local and realistic threat awareness before considering intelligent rerouting. Either the local exploration of the DDRRT is successful before reaching a maximum number of points, or the STA Network is required to find another route

    Cyberphysical Constructs and Concepts for Fully Automated Networked Vehicles

    Get PDF
    Human lives are at stake in networked systems of automated vehicles. Drawing from mature domains where life/safety critical cyberphysical systems have already been deployed as well as from various scientific disciplines, we introduce the SPEC (Safety, Privacy, Efficiency, Cybersecurity) problem which arises in self-organizing and self-healing networks of fully automated terrestrial vehicles, and CMX functionalities intended for vehicular onboard systems. CM stands for Coordinated Mobility, X stands for S, P, E and C. The CMX framework encompasses cyberphysical constructs (cells, cohorts) endowed with proven properties, onboard proactive security modules, unfalsifiable cyberphysical levels, protocols and distributed algorithms for timed-bounded inter-vehicular communications, reliable message dissemination, trusted explicit agreements/coordination, and privacy preserving options that insulate passengers from illegitimate internal cyber-surveillance and external eavesdropping and tracking. We establish inter alia that safety and privacy can be obtained jointly, by design. The focus of this report is on SE properties. Notably, we show how to achieve theoretical absolute safety (0 fatalities and 0 severe injuries in rear-end collisions and pileups) and highest efficiency (smallest safe inter-vehicular gaps) jointly, by design, in spontaneous cohorts of vehicles. Results conveyed in this report shall open new opportunities for innovative research and development of high societal impact.Les vies humaines sont en jeu dans les réseaux de véhicules automatisés, à l’instar de domaines matures où des systèmes critiques en matière de sécurité-innocuité ont déjà été déployés. Les connaissances acquises dans ces domaines ainsi que dans diverses disciplines scientifiques permettent de définir le problème SPEC (Safety, Privacy, Efficiency, Cybersecurity) qui se pose dans les réseaux auto-organisés et auto-réparateurs de véhicules terrestres à conduite entièrement automatisée. On introduit CMX, un ensemble de fonctionnalités destinées aux systèmes bord. CM est l’abréviation de Coordinated Mobility, et X signifie S, P, E et C. L’ensemble CMX repose sur des constructions cyberphysiques (cellules, cohortes) dotées de propriétés prouvées, les concepts de module de sécurité proactif et de niveaux cyberphysiques infalsifiables, des protocoles et des algorithmes distribués pour communications inter-véhiculaires en temps borné, dissémination fiable de messages, coordination et accords explicites dignes de confiance, ainsi que sur des options de protection de la vie privée qui permettent aux passagers d’interdire la cyber-surveillance illégitime interne et externe (écoutes radio et pistage des trajets). On établit qu’il est possible de garantir conjointement sécurité-innocuité (safety) et respect de la vie privée (privacy), par conception. Ce rapport est consacré aux propriétés SE. En particulier, on montre comment obtenir la sécurité-innocuité absolue théorique (taux nul de mortalité et de graves blessures en cas de collisions longitudinales) et maximiser l’efficacité (espaces inter-véhiculaires minimaux) conjointement, par conception, dans les cohortes spontanées de véhicules. Les résultats contenus dans ce rapport devraient ouvrir de nouvelles perspectives de recherche et développement à fort impact sociétal
    corecore