11,443 research outputs found

    Multi-talker Speech Separation with Utterance-level Permutation Invariant Training of Deep Recurrent Neural Networks

    Full text link
    In this paper we propose the utterance-level Permutation Invariant Training (uPIT) technique. uPIT is a practically applicable, end-to-end, deep learning based solution for speaker independent multi-talker speech separation. Specifically, uPIT extends the recently proposed Permutation Invariant Training (PIT) technique with an utterance-level cost function, hence eliminating the need for solving an additional permutation problem during inference, which is otherwise required by frame-level PIT. We achieve this using Recurrent Neural Networks (RNNs) that, during training, minimize the utterance-level separation error, hence forcing separated frames belonging to the same speaker to be aligned to the same output stream. In practice, this allows RNNs, trained with uPIT, to separate multi-talker mixed speech without any prior knowledge of signal duration, number of speakers, speaker identity or gender. We evaluated uPIT on the WSJ0 and Danish two- and three-talker mixed-speech separation tasks and found that uPIT outperforms techniques based on Non-negative Matrix Factorization (NMF) and Computational Auditory Scene Analysis (CASA), and compares favorably with Deep Clustering (DPCL) and the Deep Attractor Network (DANet). Furthermore, we found that models trained with uPIT generalize well to unseen speakers and languages. Finally, we found that a single model, trained with uPIT, can handle both two-speaker, and three-speaker speech mixtures

    Efficient multi-label classification for evolving data streams

    Get PDF
    Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. This paper proposes a new experimental framework for studying multi-label evolving stream classification, and new efficient methods that combine the best practices in streaming scenarios with the best practices in multi-label classification. We present a Multi-label Hoeffding Tree with multilabel classifiers at the leaves as a base classifier. We obtain fast and accurate methods, that are well suited for this challenging multi-label classification streaming task. Using the new experimental framework, we test our methodology by performing an evaluation study on synthetic and real-world datasets. In comparison to well-known batch multi-label methods, we obtain encouraging results

    Deep clustering: Discriminative embeddings for segmentation and separation

    Full text link
    We address the problem of acoustic source separation in a deep learning framework we call "deep clustering." Rather than directly estimating signals or masking functions, we train a deep network to produce spectrogram embeddings that are discriminative for partition labels given in training data. Previous deep network approaches provide great advantages in terms of learning power and speed, but previously it has been unclear how to use them to separate signals in a class-independent way. In contrast, spectral clustering approaches are flexible with respect to the classes and number of items to be segmented, but it has been unclear how to leverage the learning power and speed of deep networks. To obtain the best of both worlds, we use an objective function that to train embeddings that yield a low-rank approximation to an ideal pairwise affinity matrix, in a class-independent way. This avoids the high cost of spectral factorization and instead produces compact clusters that are amenable to simple clustering methods. The segmentations are therefore implicitly encoded in the embeddings, and can be "decoded" by clustering. Preliminary experiments show that the proposed method can separate speech: when trained on spectrogram features containing mixtures of two speakers, and tested on mixtures of a held-out set of speakers, it can infer masking functions that improve signal quality by around 6dB. We show that the model can generalize to three-speaker mixtures despite training only on two-speaker mixtures. The framework can be used without class labels, and therefore has the potential to be trained on a diverse set of sound types, and to generalize to novel sources. We hope that future work will lead to segmentation of arbitrary sounds, with extensions to microphone array methods as well as image segmentation and other domains.Comment: Originally submitted on June 5, 201

    Second-order Temporal Pooling for Action Recognition

    Full text link
    Deep learning models for video-based action recognition usually generate features for short clips (consisting of a few frames); such clip-level features are aggregated to video-level representations by computing statistics on these features. Typically zero-th (max) or the first-order (average) statistics are used. In this paper, we explore the benefits of using second-order statistics. Specifically, we propose a novel end-to-end learnable feature aggregation scheme, dubbed temporal correlation pooling that generates an action descriptor for a video sequence by capturing the similarities between the temporal evolution of clip-level CNN features computed across the video. Such a descriptor, while being computationally cheap, also naturally encodes the co-activations of multiple CNN features, thereby providing a richer characterization of actions than their first-order counterparts. We also propose higher-order extensions of this scheme by computing correlations after embedding the CNN features in a reproducing kernel Hilbert space. We provide experiments on benchmark datasets such as HMDB-51 and UCF-101, fine-grained datasets such as MPII Cooking activities and JHMDB, as well as the recent Kinetics-600. Our results demonstrate the advantages of higher-order pooling schemes that when combined with hand-crafted features (as is standard practice) achieves state-of-the-art accuracy.Comment: Accepted in the International Journal of Computer Vision (IJCV
    corecore