43,688 research outputs found

    Finding the hidden gems: recommending untagged music.

    Get PDF
    We have developed a novel hybrid representation for Music Information Retrieval. Our representation is built by incorporating audio content into the tag space in a tag-track matrix, and then learning hybrid concepts using latent semantic analysis. We apply this representation to the task of music recommendation, using similarity-based retrieval from a query music track. We also develop a new approach to evaluating music recommender systems, which is based upon the relationship of users liking tracks. We are interested in measuring the recommendation quality, and the rate at which cold-start tracks are recommended. Our hybrid representation is able to outperform a tag-only representation, in terms of both recommendation quality and the rate that cold-start tracks are included as recommendations

    Content-Based Music Recommendation using Deep Learning

    Get PDF
    Music streaming services use recommendation systems to improve the customer experience by generating favorable playlists and by fostering the discovery of new music. State of the art recommendation systems use both collaborative filtering and content-based recommendation methods. Collaborative filtering suffers from the cold start problem; it can only make recommendations for music for which it has enough user data, so content-based methods are preferred. Most current content-based recommendation systems use convolutional neural networks on the spectrograms of track audio. The architectures are commonly borrowed directly from the field of computer vision. It is shown in this study that musically-motivated convolutional neural network architectures outperform architectures that are highly-optimized for image-related tasks. A content-based recommendation model is built using musically-motivated deep learning architectures. The model is shown to be able to map an artist onto an artist embedding space where its nearest neighbors by cosine similarity are related artists and make good recommendations. It is also shown that metadata, such as lyrics, artist origin, and year, significantly improve these mappings when combined with raw audio data

    Current Challenges and Visions in Music Recommender Systems Research

    Full text link
    Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field

    Graph-RAT: Combining data sources in music recommendation systems

    Get PDF
    The complexity of music recommendation systems has increased rapidly in recent years, drawing upon different sources of information: content analysis, web-mining, social tagging, etc. Unfortunately, the tools to scientifically evaluate such integrated systems are not readily available; nor are the base algorithms available. This article describes Graph-RAT (Graph-based Relational Analysis Toolkit), an open source toolkit that provides a framework for developing and evaluating novel hybrid systems. While this toolkit is designed for music recommendation, it has applications outside its discipline as well. An experiment—indicative of the sort of procedure that can be configured using the toolkit—is provided to illustrate its usefulness

    Learning to rank music tracks using triplet loss

    Full text link
    Most music streaming services rely on automatic recommendation algorithms to exploit their large music catalogs. These algorithms aim at retrieving a ranked list of music tracks based on their similarity with a target music track. In this work, we propose a method for direct recommendation based on the audio content without explicitly tagging the music tracks. To that aim, we propose several strategies to perform triplet mining from ranked lists. We train a Convolutional Neural Network to learn the similarity via triplet loss. These different strategies are compared and validated on a large-scale experiment against an auto-tagging based approach. The results obtained highlight the efficiency of our system, especially when associated with an Auto-pooling layer
    corecore