55,416 research outputs found

    Mass Displacement Networks

    Full text link
    Despite the large improvements in performance attained by using deep learning in computer vision, one can often further improve results with some additional post-processing that exploits the geometric nature of the underlying task. This commonly involves displacing the posterior distribution of a CNN in a way that makes it more appropriate for the task at hand, e.g. better aligned with local image features, or more compact. In this work we integrate this geometric post-processing within a deep architecture, introducing a differentiable and probabilistically sound counterpart to the common geometric voting technique used for evidence accumulation in vision. We refer to the resulting neural models as Mass Displacement Networks (MDNs), and apply them to human pose estimation in two distinct setups: (a) landmark localization, where we collapse a distribution to a point, allowing for precise localization of body keypoints and (b) communication across body parts, where we transfer evidence from one part to the other, allowing for a globally consistent pose estimate. We evaluate on large-scale pose estimation benchmarks, such as MPII Human Pose and COCO datasets, and report systematic improvements when compared to strong baselines.Comment: 12 pages, 4 figure

    Geometric Wavelet Scattering Networks on Compact Riemannian Manifolds

    Full text link
    The Euclidean scattering transform was introduced nearly a decade ago to improve the mathematical understanding of convolutional neural networks. Inspired by recent interest in geometric deep learning, which aims to generalize convolutional neural networks to manifold and graph-structured domains, we define a geometric scattering transform on manifolds. Similar to the Euclidean scattering transform, the geometric scattering transform is based on a cascade of wavelet filters and pointwise nonlinearities. It is invariant to local isometries and stable to certain types of diffeomorphisms. Empirical results demonstrate its utility on several geometric learning tasks. Our results generalize the deformation stability and local translation invariance of Euclidean scattering, and demonstrate the importance of linking the used filter structures to the underlying geometry of the data.Comment: 35 pages; 3 figures; 2 tables; v3: Revisions based on reviewer comment

    Object Level Deep Feature Pooling for Compact Image Representation

    Full text link
    Convolutional Neural Network (CNN) features have been successfully employed in recent works as an image descriptor for various vision tasks. But the inability of the deep CNN features to exhibit invariance to geometric transformations and object compositions poses a great challenge for image search. In this work, we demonstrate the effectiveness of the objectness prior over the deep CNN features of image regions for obtaining an invariant image representation. The proposed approach represents the image as a vector of pooled CNN features describing the underlying objects. This representation provides robustness to spatial layout of the objects in the scene and achieves invariance to general geometric transformations, such as translation, rotation and scaling. The proposed approach also leads to a compact representation of the scene, making each image occupy a smaller memory footprint. Experiments show that the proposed representation achieves state of the art retrieval results on a set of challenging benchmark image datasets, while maintaining a compact representation.Comment: Deep Vision 201

    DeepFactors: Real-time probabilistic dense monocular SLAM

    Get PDF
    The ability to estimate rich geometry and camera motion from monocular imagery is fundamental to future interactive robotics and augmented reality applications. Different approaches have been proposed that vary in scene geometry representation (sparse landmarks, dense maps), the consistency metric used for optimising the multi-view problem, and the use of learned priors. We present a SLAM system that unifies these methods in a probabilistic framework while still maintaining real-time performance. This is achieved through the use of a learned compact depth map representation and reformulating three different types of errors: photometric, reprojection and geometric, which we make use of within standard factor graph software. We evaluate our system on trajectory estimation and depth reconstruction on real-world sequences and present various examples of estimated dense geometry

    Aggregated Deep Local Features for Remote Sensing Image Retrieval

    Get PDF
    Remote Sensing Image Retrieval remains a challenging topic due to the special nature of Remote Sensing Imagery. Such images contain various different semantic objects, which clearly complicates the retrieval task. In this paper, we present an image retrieval pipeline that uses attentive, local convolutional features and aggregates them using the Vector of Locally Aggregated Descriptors (VLAD) to produce a global descriptor. We study various system parameters such as the multiplicative and additive attention mechanisms and descriptor dimensionality. We propose a query expansion method that requires no external inputs. Experiments demonstrate that even without training, the local convolutional features and global representation outperform other systems. After system tuning, we can achieve state-of-the-art or competitive results. Furthermore, we observe that our query expansion method increases overall system performance by about 3%, using only the top-three retrieved images. Finally, we show how dimensionality reduction produces compact descriptors with increased retrieval performance and fast retrieval computation times, e.g. 50% faster than the current systems.Comment: Published in Remote Sensing. The first two authors have equal contributio

    Optimal rates of convergence for persistence diagrams in Topological Data Analysis

    Full text link
    Computational topology has recently known an important development toward data analysis, giving birth to the field of topological data analysis. Topological persistence, or persistent homology, appears as a fundamental tool in this field. In this paper, we study topological persistence in general metric spaces, with a statistical approach. We show that the use of persistent homology can be naturally considered in general statistical frameworks and persistence diagrams can be used as statistics with interesting convergence properties. Some numerical experiments are performed in various contexts to illustrate our results
    corecore