95,497 research outputs found

    Regret Bounds for Risk-sensitive Reinforcement Learning with Lipschitz Dynamic Risk Measures

    Full text link
    We study finite episodic Markov decision processes incorporating dynamic risk measures to capture risk sensitivity. To this end, we present two model-based algorithms applied to \emph{Lipschitz} dynamic risk measures, a wide range of risk measures that subsumes spectral risk measure, optimized certainty equivalent, distortion risk measures among others. We establish both regret upper bounds and lower bounds. Notably, our upper bounds demonstrate optimal dependencies on the number of actions and episodes, while reflecting the inherent trade-off between risk sensitivity and sample complexity. Additionally, we substantiate our theoretical results through numerical experiments

    Online and Stochastic Gradient Methods for Non-decomposable Loss Functions

    Full text link
    Modern applications in sensitive domains such as biometrics and medicine frequently require the use of non-decomposable loss functions such as precision@k, F-measure etc. Compared to point loss functions such as hinge-loss, these offer much more fine grained control over prediction, but at the same time present novel challenges in terms of algorithm design and analysis. In this work we initiate a study of online learning techniques for such non-decomposable loss functions with an aim to enable incremental learning as well as design scalable solvers for batch problems. To this end, we propose an online learning framework for such loss functions. Our model enjoys several nice properties, chief amongst them being the existence of efficient online learning algorithms with sublinear regret and online to batch conversion bounds. Our model is a provable extension of existing online learning models for point loss functions. We instantiate two popular losses, prec@k and pAUC, in our model and prove sublinear regret bounds for both of them. Our proofs require a novel structural lemma over ranked lists which may be of independent interest. We then develop scalable stochastic gradient descent solvers for non-decomposable loss functions. We show that for a large family of loss functions satisfying a certain uniform convergence property (that includes prec@k, pAUC, and F-measure), our methods provably converge to the empirical risk minimizer. Such uniform convergence results were not known for these losses and we establish these using novel proof techniques. We then use extensive experimentation on real life and benchmark datasets to establish that our method can be orders of magnitude faster than a recently proposed cutting plane method.Comment: 25 pages, 3 figures, To appear in the proceedings of the 28th Annual Conference on Neural Information Processing Systems, NIPS 201

    Optimal PAC Bounds Without Uniform Convergence

    Full text link
    In statistical learning theory, determining the sample complexity of realizable binary classification for VC classes was a long-standing open problem. The results of Simon and Hanneke established sharp upper bounds in this setting. However, the reliance of their argument on the uniform convergence principle limits its applicability to more general learning settings such as multiclass classification. In this paper, we address this issue by providing optimal high probability risk bounds through a framework that surpasses the limitations of uniform convergence arguments. Our framework converts the leave-one-out error of permutation invariant predictors into high probability risk bounds. As an application, by adapting the one-inclusion graph algorithm of Haussler, Littlestone, and Warmuth, we propose an algorithm that achieves an optimal PAC bound for binary classification. Specifically, our result shows that certain aggregations of one-inclusion graph algorithms are optimal, addressing a variant of a classic question posed by Warmuth. We further instantiate our framework in three settings where uniform convergence is provably suboptimal. For multiclass classification, we prove an optimal risk bound that scales with the one-inclusion hypergraph density of the class, addressing the suboptimality of the analysis of Daniely and Shalev-Shwartz. For partial hypothesis classification, we determine the optimal sample complexity bound, resolving a question posed by Alon, Hanneke, Holzman, and Moran. For realizable bounded regression with absolute loss, we derive an optimal risk bound that relies on a modified version of the scale-sensitive dimension, refining the results of Bartlett and Long. Our rates surpass standard uniform convergence-based results due to the smaller complexity measure in our risk bound.Comment: 27 page

    Universal Convexification via Risk-Aversion

    Full text link
    We develop a framework for convexifying a fairly general class of optimization problems. Under additional assumptions, we analyze the suboptimality of the solution to the convexified problem relative to the original nonconvex problem and prove additive approximation guarantees. We then develop algorithms based on stochastic gradient methods to solve the resulting optimization problems and show bounds on convergence rates. %We show a simple application of this framework to supervised learning, where one can perform integration explicitly and can use standard (non-stochastic) optimization algorithms with better convergence guarantees. We then extend this framework to apply to a general class of discrete-time dynamical systems. In this context, our convexification approach falls under the well-studied paradigm of risk-sensitive Markov Decision Processes. We derive the first known model-based and model-free policy gradient optimization algorithms with guaranteed convergence to the optimal solution. Finally, we present numerical results validating our formulation in different applications
    • …
    corecore