674 research outputs found

    Big Data sources and methods for social and economic analyses

    Full text link
    [EN] The Data Big Bang that the development of the ICTs has raised is providing us with a stream of fresh and digitized data related to how people, companies and other organizations interact. To turn these data into knowledge about the underlying behavior of the social and economic agents, organizations and researchers must deal with such amount of unstructured and heterogeneous data. Succeeding in this task requires to carefully plan and organize the whole process of data analysis taking into account the particularities of the social and economic analyses, which include the wide variety of heterogeneous sources of information and a strict governance policy. Grounded on the data lifecycle approach, this paper develops a Big Data architecture that properly integrates most of the non-traditional information sources and data analysis methods in order to provide a specifically designed system for forecasting social and economic behaviors, trends and changes.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under Grant TIN2013-43913-R; and by the Spanish Ministry of Education under Grant FPU14/02386.Blazquez, D.; Domenech, J. (2018). Big Data sources and methods for social and economic analyses. Technological Forecasting and Social Change. 130:99-113. https://doi.org/10.1016/j.techfore.2017.07.027S9911313

    mPSAuth: Privacy-Preserving and Scalable Authentication for Mobile Web Applications

    Full text link
    As nowadays most web application requests originate from mobile devices, authentication of mobile users is essential in terms of security considerations. To this end, recent approaches rely on machine learning techniques to analyze various aspects of user behavior as a basis for authentication decisions. These approaches face two challenges: first, examining behavioral data raises significant privacy concerns, and second, approaches must scale to support a large number of users. Existing approaches do not address these challenges sufficiently. We propose mPSAuth, an approach for continuously tracking various data sources reflecting user behavior (e.g., touchscreen interactions, sensor data) and estimating the likelihood of the current user being legitimate based on machine learning techniques. With mPSAuth, both the authentication protocol and the machine learning models operate on homomorphically encrypted data to ensure the users' privacy. Furthermore, the number of machine learning models used by mPSAuth is independent of the number of users, thus providing adequate scalability. In an extensive evaluation based on real-world data from a mobile application, we illustrate that mPSAuth can provide high accuracy with low encryption and communication overhead, while the effort for the inference is increased to a tolerable extent.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Dynamic Security Risk Evaluation via Hybrid Bayesian Risk Graph in Cyber-Physical Social Systems

    Get PDF
    © 2014 IEEE. Cyber-physical social system (CPSS) plays an important role in both the modern lifestyle and business models, which significantly changes the way we interact with the physical world. The increasing influence of cyber systems and social networks is also a high risk for security threats. The objective of this paper is to investigate associated risks in CPSS, and a hybrid Bayesian risk graph (HBRG) model is proposed to analyze the temporal attack activity patterns in dynamic cyber-physical social networks. In the proposed approach, a hidden Markov model is introduced to model the dynamic influence of activities, which then be mapped into a Bayesian risks graph (BRG) model that can evaluate the risk propagation in a layered risk architecture. Our numerical studies demonstrate that the framework can model and evaluate risks of user activity patterns that expose to CPSSs

    Data Science Methods for Nursing-Relevant Patient Outcomes and Clinical Processes The 2019 Literature Year in Review

    Get PDF
    Data science continues to be recognized and used within healthcare due to the increased availability of large data sets and advanced analytics. It can be challenging for nurse leaders to remain apprised of this rapidly changing landscape. In this article, we describe our findings from a scoping literature review of papers published in 2019 that use data science to explore, explain, and/or predict 15 phenomena of interest to nurses. Fourteen of the 15 phenomena were associated with at least one paper published in 2019. We identified the use of many contemporary data science methods (eg, natural language processing, neural networks) for many of the outcomes. We found many studies exploring Readmissions and Pressure Injuries. The topics of Artificial Intelligence/Machine Learning Acceptance, Burnout, Patient Safety, and Unit Culture were poorly represented. We hope that the studies described in this article help readers: (1) understand the breadth and depth of data science\u27s ability to improve clinical processes and patient outcomes that are relevant to nurses and (2) identify gaps in the literature that are in need of exploratio

    Combining direct and indirect sparse data for learning generalizable turbulence models

    Get PDF
    Learning turbulence models from observation data is of significant interest in discovering a unified model for a broad range of practical flow applications. Either the direct observation of Reynolds stress or the indirect observation of velocity has been used to improve the predictive capacity of turbulence models. In this work, we propose combining the direct and indirect sparse data to train neural network-based turbulence models. The backpropagation technique and the observation augmentation approach are used to train turbulence models with different observation data in a unified ensemble-based framework. These two types of observation data can explore synergy to constrain the model training in different observation spaces, which enables learning generalizable models from very sparse data. The present method is tested in secondary flows in a square duct and separated flows over periodic hills. Both cases demonstrate that combining direct and indirect observations is able to improve the generalizability of the learned model in similar flow configurations, compared to using only indirect data. The ensemble-based method can serve as a practical tool for model learning from different types of observations due to its non-intrusive and derivative-free nature.Comment: 42 pages, 16 figure

    Review on distribution network optimization under uncertainty

    Get PDF
    With the increase of renewable energy in electricity generation and increased engagement from demand sides, distribution network planning and operation face great challenges in the provision of stable, secure and dedicated service under a high level of uncertainty in network behaviors. Distribution network planning and operation, at the same time, also benefit from the changes of current and future distribution networks in terms of the availability of increased resources, diversity, smartness, controllability and flexibility of the distribution networks. This paper reviews the critical optimization problems faced by distribution planning and operation, including how to cope with these changes, how to integrate an optimization process in a problem-solving framework to efficiently search for optimal strategy and how to optimize sources and flexibilities properly in order to achieve cost-effective operation and provide quality of services as required, among other factors. This paper also discusses the approaches to reduce the heavy computation load when solving large-scale network optimization problems, for instance by integrating the prior knowledge of network configuration in optimization search space. A number of optimization techniques have been reviewed and discussed in the paper. This paper also discusses the changes, challenges and opportunities in future distribution networks, analyzes the possible problems that will be faced by future network planning and operations and discusses the potential strategies to solve these optimization problems

    Interpreting Business Strategy and Market Dynamics: A Multi-Method AI Approach

    Get PDF
    This research paper presents an integrated approach that combines Long Short-Term Memory (LSTM), Q-Learning, Monte Carlo methods, and Text-to-Text Transfer Transformer (T5) to analyze and evaluate the business strategies of public companies. Leveraging a large and diverse dataset sourced from multiple reliable sources, the study examines corporate strategies and their impact on market dynamics. LSTM and Q-Learning are employed to process sequential data, enabling informed decision-making in simulated market environments and providing insights into potential outcomes of different strategies. The Monte Carlo method manages uncertainty, allowing for a comprehensive analysis of risks and rewards associated with specific strategies. T5 interprets textual data from earnings calls, press releases, and industry reports, offering a deeper understanding of strategic changes and market sentiments. The integration of these techniques enhances the evaluation of business strategies, enabling decision-makers to anticipate future market scenarios and make informed strategic shifts. Overall, this integrated approach provides a comprehensive framework for evaluating and anticipating market dynamics, enhancing the assessment and adjustment of public companies\u27 business decisions

    Temporal and Spatiotemporal Arboviruses Forecasting by Machine Learning: A Systematic Review

    Get PDF
    Arboviruses are a group of diseases that are transmitted by an arthropod vector. Since they are part of the Neglected Tropical Diseases that pose several public health challenges for countries around the world. The arboviruses' dynamics are governed by a combination of climatic, environmental, and human mobility factors. Arboviruses prediction models can be a support tool for decision-making by public health agents. In this study, we propose a systematic literature review to identify arboviruses prediction models, as well as models for their transmitter vector dynamics. To carry out this review, we searched reputable scientific bases such as IEE Xplore, PubMed, Science Direct, Springer Link, and Scopus. We search for studies published between the years 2015 and 2020, using a search string. A total of 429 articles were returned, however, after filtering by exclusion and inclusion criteria, 139 were included. Through this systematic review, it was possible to identify the challenges present in the construction of arboviruses prediction models, as well as the existing gap in the construction of spatiotemporal models

    A systematic survey of online data mining technology intended for law enforcement

    Get PDF
    As an increasing amount of crime takes on a digital aspect, law enforcement bodies must tackle an online environment generating huge volumes of data. With manual inspections becoming increasingly infeasible, law enforcement bodies are optimising online investigations through data-mining technologies. Such technologies must be well designed and rigorously grounded, yet no survey of the online data-mining literature exists which examines their techniques, applications and rigour. This article remedies this gap through a systematic mapping study describing online data-mining literature which visibly targets law enforcement applications, using evidence-based practices in survey making to produce a replicable analysis which can be methodologically examined for deficiencies
    corecore