16,290 research outputs found

    Parameter Learning of Logic Programs for Symbolic-Statistical Modeling

    Full text link
    We propose a logical/mathematical framework for statistical parameter learning of parameterized logic programs, i.e. definite clause programs containing probabilistic facts with a parameterized distribution. It extends the traditional least Herbrand model semantics in logic programming to distribution semantics, possible world semantics with a probability distribution which is unconditionally applicable to arbitrary logic programs including ones for HMMs, PCFGs and Bayesian networks. We also propose a new EM algorithm, the graphical EM algorithm, that runs for a class of parameterized logic programs representing sequential decision processes where each decision is exclusive and independent. It runs on a new data structure called support graphs describing the logical relationship between observations and their explanations, and learns parameters by computing inside and outside probability generalized for logic programs. The complexity analysis shows that when combined with OLDT search for all explanations for observations, the graphical EM algorithm, despite its generality, has the same time complexity as existing EM algorithms, i.e. the Baum-Welch algorithm for HMMs, the Inside-Outside algorithm for PCFGs, and the one for singly connected Bayesian networks that have been developed independently in each research field. Learning experiments with PCFGs using two corpora of moderate size indicate that the graphical EM algorithm can significantly outperform the Inside-Outside algorithm

    Probabilistic Methodology and Techniques for Artefact Conception and Development

    Get PDF
    The purpose of this paper is to make a state of the art on probabilistic methodology and techniques for artefact conception and development. It is the 8th deliverable of the BIBA (Bayesian Inspired Brain and Artefacts) project. We first present the incompletness problem as the central difficulty that both living creatures and artefacts have to face: how can they perceive, infer, decide and act efficiently with incomplete and uncertain knowledge?. We then introduce a generic probabilistic formalism called Bayesian Programming. This formalism is then used to review the main probabilistic methodology and techniques. This review is organized in 3 parts: first the probabilistic models from Bayesian networks to Kalman filters and from sensor fusion to CAD systems, second the inference techniques and finally the learning and model acquisition and comparison methodologies. We conclude with the perspectives of the BIBA project as they rise from this state of the art

    Genetic algorithms with DNN-based trainable crossover as an example of partial specialization of general search

    Full text link
    Universal induction relies on some general search procedure that is doomed to be inefficient. One possibility to achieve both generality and efficiency is to specialize this procedure w.r.t. any given narrow task. However, complete specialization that implies direct mapping from the task parameters to solutions (discriminative models) without search is not always possible. In this paper, partial specialization of general search is considered in the form of genetic algorithms (GAs) with a specialized crossover operator. We perform a feasibility study of this idea implementing such an operator in the form of a deep feedforward neural network. GAs with trainable crossover operators are compared with the result of complete specialization, which is also represented as a deep neural network. Experimental results show that specialized GAs can be more efficient than both general GAs and discriminative models.Comment: AGI 2017 procedding, The final publication is available at link.springer.co
    • …
    corecore