26,326 research outputs found

    Marginal Pseudo-Likelihood Learning of Discrete Markov Network Structures

    Get PDF
    Markov networks are a popular tool for modeling multivariate distributions over a set of discrete variables. The core of the Markov network representation is an undirected graph which elegantly captures the dependence structure over the variables. Traditionally, the Bayesian approach of learning the graph structure from data has been done under the assumption of chordality since non-chordal graphs are difficult to evaluate for likelihood-based scores. Recently, there has been a surge of interest towards the use of regularized pseudo-likelihood methods as such approaches can avoid the assumption of chordality. Many of the currently available methods necessitate the use of a tuning parameter to adapt the level of regularization for a particular dataset. Here we introduce the marginal pseudo-likelihood which has a built-in regularization through marginalization over the graph-specific nuisance parameters. We prove consistency of the resulting graph estimator via comparison with the pseudo-Bayesian information criterion. To identify high-scoring graph structures in a high-dimensional setting we design a two-step algorithm that exploits the decomposable structure of the score. Using synthetic and existing benchmark networks, the marginal pseudo-likelihood method is shown to perform favorably against recent popular structure learning methods.Peer reviewe

    Learning factor graphs in polynomial time and sample complexity

    Get PDF
    We study the computational and sample complexity of parameter and structure learning in graphical models. Our main result shows that the class of factor graphs with bounded degree can be learned in polynomial time and from a polynomial number of training examples, assuming that the data is generated by a network in this class. This result covers both parameter estimation for a known network structure and structure learning. It implies as a corollary that we can learn factor graphs for both Bayesian networks and Markov networks of bounded degree, in polynomial time and sample complexity. Importantly, unlike standard maximum likelihood estimation algorithms, our method does not require inference in the underlying network, and so applies to networks where inference is intractable. We also show that the error of our learned model degrades gracefully when the generating distribution is not a member of the target class of networks. In addition to our main result, we show that the sample complexity of parameter learning in graphical models has an O(1) dependence on the number of variables in the model when using the KL-divergence normalized by the number of variables as the performance criterion

    Learning the Structure of Deep Sparse Graphical Models

    Full text link
    Deep belief networks are a powerful way to model complex probability distributions. However, learning the structure of a belief network, particularly one with hidden units, is difficult. The Indian buffet process has been used as a nonparametric Bayesian prior on the directed structure of a belief network with a single infinitely wide hidden layer. In this paper, we introduce the cascading Indian buffet process (CIBP), which provides a nonparametric prior on the structure of a layered, directed belief network that is unbounded in both depth and width, yet allows tractable inference. We use the CIBP prior with the nonlinear Gaussian belief network so each unit can additionally vary its behavior between discrete and continuous representations. We provide Markov chain Monte Carlo algorithms for inference in these belief networks and explore the structures learned on several image data sets.Comment: 20 pages, 6 figures, AISTATS 2010, Revise
    • …
    corecore