1,361 research outputs found

    Children as Models for Computers: Natural Language Acquisition for Machine Learning

    No full text
    International audienceThis paper focuses on a subfield of machine learning, the so- called grammatical inference. Roughly speaking, grammatical inference deals with the problem of inferring a grammar that generates a given set of sample sentences in some manner that is supposed to be realized by some inference algorithm. We discuss how the analysis and formalization of the main features of the process of human natural language acquisition may improve results in the area of grammatical inference

    Automating data preparation with statistical analysis

    Get PDF
    Data preparation is the process of transforming raw data into a clean and consumable format. It is widely known as the bottleneck to extract value and insights from data, due to the number of possible tasks in the pipeline and factors that can largely affect the results, such as human expertise, application scenarios, and solution methodology. Researchers and practitioners devised a great variety of techniques and tools over the decades, while many of them still place a significant burden on human’s side to configure the suitable input rules and parameters. In this thesis, with the goal of reducing human manual effort, we explore using the power of statistical analysis techniques to automate three subtasks in the data preparation pipeline: data enrichment, error detection, and entity matching. Statistical analysis is the process of discovering underlying patterns and trends from data and deducing properties of an underlying distribution of probability from a sample, for example, testing hypotheses and deriving estimates. We first discuss CrawlEnrich, which automatically figures out the queries for data enrichment via web API data, by estimating the potential benefit of issuing a certain query. Then we study how to derive reusable error detection configuration rules from a web table corpus, so that end-users get results with no efforts. Finally, we introduce AutoML-EM, aiming to automate the entity matching model development process. Entity matching is to find the identical entities in real-world. Our work provides powerful angles to automate the process of various data preparation steps, and we conclude this thesis by discussing future directions

    Pragmatic Frames for Teaching and Learning in Human-Robot interaction: Review and Challenges

    Get PDF
    Vollmer A-L, Wrede B, Rohlfing KJ, Oudeyer P-Y. Pragmatic Frames for Teaching and Learning in Human-Robot interaction: Review and Challenges. FRONTIERS IN NEUROROBOTICS. 2016;10: 10.One of the big challenges in robotics today is to learn from human users that are inexperienced in interacting with robots but yet are often used to teach skills flexibly to other humans and to children in particular. A potential route toward natural and efficient learning and teaching in Human-Robot Interaction (HRI) is to leverage the social competences of humans and the underlying interactional mechanisms. In this perspective, this article discusses the importance of pragmatic frames as flexible interaction protocols that provide important contextual cues to enable learners to infer new action or language skills and teachers to convey these cues. After defining and discussing the concept of pragmatic frames, grounded in decades of research in developmental psychology, we study a selection of HRI work in the literature which has focused on learning-teaching interaction and analyze the interactional and learning mechanisms that were used in the light of pragmatic frames. This allows us to show that many of the works have already used in practice, but not always explicitly, basic elements of the pragmatic frames machinery. However, we also show that pragmatic frames have so far been used in a very restricted way as compared to how they are used in human-human interaction and argue that this has been an obstacle preventing robust natural multi-task learning and teaching in HRI. In particular, we explain that two central features of human pragmatic frames, mostly absent of existing HRI studies, are that (1) social peers use rich repertoires of frames, potentially combined together, to convey and infer multiple kinds of cues; (2) new frames can be learnt continually, building on existing ones, and guiding the interaction toward higher levels of complexity and expressivity. To conclude, we give an outlook on the future research direction describing the relevant key challenges that need to be solved for leveraging pragmatic frames for robot learning and teaching

    Heavy Hitters and the Structure of Local Privacy

    Full text link
    We present a new locally differentially private algorithm for the heavy hitters problem which achieves optimal worst-case error as a function of all standardly considered parameters. Prior work obtained error rates which depend optimally on the number of users, the size of the domain, and the privacy parameter, but depend sub-optimally on the failure probability. We strengthen existing lower bounds on the error to incorporate the failure probability, and show that our new upper bound is tight with respect to this parameter as well. Our lower bound is based on a new understanding of the structure of locally private protocols. We further develop these ideas to obtain the following general results beyond heavy hitters. \bullet Advanced Grouposition: In the local model, group privacy for kk users degrades proportionally to k\approx \sqrt{k}, instead of linearly in kk as in the central model. Stronger group privacy yields improved max-information guarantees, as well as stronger lower bounds (via "packing arguments"), over the central model. \bullet Building on a transformation of Bassily and Smith (STOC 2015), we give a generic transformation from any non-interactive approximate-private local protocol into a pure-private local protocol. Again in contrast with the central model, this shows that we cannot obtain more accurate algorithms by moving from pure to approximate local privacy

    A query language for exploratory analysis of video-based tracking data in padel matches

    Get PDF
    Recent advances in sensor technologies, in particular video-based human detection, object tracking and pose estimation, have opened new possibilities for the automatic or semi-automatic per-frame annotation of sport videos. In the case of racket sports such as tennis and padel, state-of- the-art deep learning methods allow the robust detection and tracking of the players from a single video, which can be combined with ball tracking and shot recognition techniques to obtain a precise description of the play state at every frame. These data, which might include the court-space position of the players, their speeds, accelerations, shots and ball trajectories, can be exported in tabular format for further analysis. Unfortunately, the limitations of traditional table-based methods for analyzing such sport data are twofold. On the one hand, these methods cannot represent complex spatio-temporal queries in a compact, readable way, usable by sport analysts. On the other hand, traditional data visualization tools often fail to convey all the information available in the video (such as the precise body motion before, during and after the execution of a shot) and resulting plots only show a small portion of the available data. In this paper we address these two limitations by focusing on the analysis of video-based tracking data of padel matches. In particular, we propose a domain-specific query language to facilitate coaches and sport analysts to write queries in a very compact form. Additionally, we enrich the data visualization plots by linking each data item to a specific segment of the video so that analysts have full access to all the details related to the query. We demonstrate the flexibility of our system by collecting and converting into readable queries multiple tips and hypotheses on padel strategies extracted from the literature.Postprint (published version
    corecore