176 research outputs found

    Deep Reinforcement Learning Mechanism for Dynamic Access Control in Wireless Networks Handling mMTC

    Full text link
    [EN] One important issue that needs to be addressed in order to provide effective massive deployments of IoT devices is access control. In 5G cellular networks, the Access Class Barring (ACB) method aims at increasing the total successful access probability by delaying randomly access requests. This mechanism can be controlled through the barring rate, which can be easily adapted in networks where Human-to-Human (H2H) communications are prevalent. However, in scenarios with massive deployments such as those found in IoT applications, it is not evident how this parameter should be set, and how it should adapt to dynamic traffic conditions. We propose a double deep reinforcement learning mechanism to adapt the barring rate of ACB under dynamic conditions. The algorithm is trained with simultaneous H2H and Machine-to-Machine (M2M) traffic, but we perform a separate performance evaluation for each type of traffic. The results show that our proposed mechanism is able to reach a successful access rate of 100 % for both H2H and M2M UEs and reduce the mean number of preamble transmissions while slightly affecting the mean access delay, even for scenarios with very high load. Also, its performance remains stable under the variation of different parameters. (C) 2019 Elsevier B.V. All rights reserved.The research of D. Pacheco-Paramo was supported by Universidad Sergio Arboleda, P.t. Tecnologias para la inclusion social y la competitividad economica. 0.E.6. The research of L Tello-Oquendo was conducted under project CONV.2018-ING010. Universidad Nacional de Chimborazo. The research of V. Pla and J. Martinez-Bauset was supported by Grant PGC2018-094151-B-I00 (MCIU/AEI/FEDER,UE).Pacheco-Paramo, DF.; Tello-Oquendo, L.; Pla, V.; Martínez Bauset, J. (2019). Deep Reinforcement Learning Mechanism for Dynamic Access Control in Wireless Networks Handling mMTC. Ad Hoc Networks. 94:1-14. https://doi.org/10.1016/j.adhoc.2019.101939S1149

    Insights on critical energy efficiency approaches in internet-of-things application

    Get PDF
    Internet-of-things (IoT) is one of the proliferated technologies that result in a larger scale of connection among different computational devices. However, establishing such a connection requires a fault-tolerant routing scheme. The existing routing scheme results in communication but does not address various problems directly linked with energy consumption. Cross layer-based scheme and optimization schemes are frequently used scheme for improving the energy efficiency performance in IoT. Therefore, this paper investigates the approaches where cross-layer-based schemes are used to retain energy efficiencies among resource-constrained devices. The paper discusses the effectivity of the approaches used to optimize network performance in IoT applications. The study outcome of this paper showcase that there are various open-end issues, which is required to be addressed effectively in order to improve the performance of application associated with the IoT system

    MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

    Get PDF
    Massively Parallel Computation (MPC) is a model of computation widely believed to best capture realistic parallel computing architectures such as large-scale MapReduce and Hadoop clusters. Motivated by the fact that many data analytics tasks performed on these platforms involve sensitive user data, we initiate the theoretical exploration of how to leverage MPC architectures to enable efficient, privacy-preserving computation over massive data. Clearly if a computation task does not lend itself to an efficient implementation on MPC even without security, then we cannot hope to compute it efficiently on MPC with security. We show, on the other hand, that any task that can be efficiently computed on MPC can also be securely computed with comparable efficiency. Specifically, we show the following results: - any MPC algorithm can be compiled to a communication-oblivious counterpart while asymptotically preserving its round and space complexity, where communication-obliviousness ensures that any network intermediary observing the communication patterns learn no information about the secret inputs; - assuming the existence of Fully Homomorphic Encryption with a suitable notion of compactness and other standard cryptographic assumptions, any MPC algorithm can be compiled to a secure counterpart that defends against an adversary who controls not only intermediate network routers but additionally up to 1/3 - ? fraction of machines (for an arbitrarily small constant ?) - moreover, this compilation preserves the round complexity tightly, and preserves the space complexity upto a multiplicative security parameter related blowup. As an initial exploration of this important direction, our work suggests new definitions and proposes novel protocols that blend algorithmic and cryptographic techniques

    The Hierarchical Discrete Pursuit Learning Automaton: A Novel Scheme With Fast Convergence and Epsilon-Optimality

    Get PDF
    Author's accepted manuscript© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Since the early 1960s, the paradigm of learning automata (LA) has experienced abundant interest. Arguably, it has also served as the foundation for the phenomenon and field of reinforcement learning (RL). Over the decades, new concepts and fundamental principles have been introduced to increase the LA’s speed and accuracy. These include using probability updating functions, discretizing the probability space, and using the “Pursuit” concept. Very recently, the concept of incorporating “structure” into the ordering of the LA’s actions has improved both the speed and accuracy of the corresponding hierarchical machines, when the number of actions is large. This has led to the ϵ -optimal hierarchical continuous pursuit LA (HCPA). This article pioneers the inclusion of all the above-mentioned phenomena into a new single LA, leading to the novel hierarchical discretized pursuit LA (HDPA). Indeed, although the previously proposed HCPA is powerful, its speed has an impediment when any action probability is close to unity, because the updates of the components of the probability vector are correspondingly smaller when any action probability becomes closer to unity. We propose here, the novel HDPA, where we infuse the phenomenon of discretization into the action probability vector’s updating functionality, and which is invoked recursively at every stage of the machine’s hierarchical structure. This discretized functionality does not possess the same impediment, because discretization prohibits it. We demonstrate the HDPA’s robustness and validity by formally proving the ϵ -optimality by utilizing the moderation property. We also invoke the submartingale characteristic at every level, to prove that the action probability of the optimal action converges to unity as time goes to infinity. Apart from the new machine being ϵ -optimal, the numerical results demonstrate that the number of iterations required for convergence is significantly reduce...acceptedVersio

    Stepping Beyond the Newtonian Paradigm in Biology. Towards an Integrable Model of Life: Accelerating Discovery in the Biological Foundations of Science

    Get PDF
    The INBIOSA project brings together a group of experts across many disciplines who believe that science requires a revolutionary transformative step in order to address many of the vexing challenges presented by the world. It is INBIOSA’s purpose to enable the focused collaboration of an interdisciplinary community of original thinkers. This paper sets out the case for support for this effort. The focus of the transformative research program proposal is biology-centric. We admit that biology to date has been more fact-oriented and less theoretical than physics. However, the key leverageable idea is that careful extension of the science of living systems can be more effectively applied to some of our most vexing modern problems than the prevailing scheme, derived from abstractions in physics. While these have some universal application and demonstrate computational advantages, they are not theoretically mandated for the living. A new set of mathematical abstractions derived from biology can now be similarly extended. This is made possible by leveraging new formal tools to understand abstraction and enable computability. [The latter has a much expanded meaning in our context from the one known and used in computer science and biology today, that is "by rote algorithmic means", since it is not known if a living system is computable in this sense (Mossio et al., 2009).] Two major challenges constitute the effort. The first challenge is to design an original general system of abstractions within the biological domain. The initial issue is descriptive leading to the explanatory. There has not yet been a serious formal examination of the abstractions of the biological domain. What is used today is an amalgam; much is inherited from physics (via the bridging abstractions of chemistry) and there are many new abstractions from advances in mathematics (incentivized by the need for more capable computational analyses). Interspersed are abstractions, concepts and underlying assumptions “native” to biology and distinct from the mechanical language of physics and computation as we know them. A pressing agenda should be to single out the most concrete and at the same time the most fundamental process-units in biology and to recruit them into the descriptive domain. Therefore, the first challenge is to build a coherent formal system of abstractions and operations that is truly native to living systems. Nothing will be thrown away, but many common methods will be philosophically recast, just as in physics relativity subsumed and reinterpreted Newtonian mechanics. This step is required because we need a comprehensible, formal system to apply in many domains. Emphasis should be placed on the distinction between multi-perspective analysis and synthesis and on what could be the basic terms or tools needed. The second challenge is relatively simple: the actual application of this set of biology-centric ways and means to cross-disciplinary problems. In its early stages, this will seem to be a “new science”. This White Paper sets out the case of continuing support of Information and Communication Technology (ICT) for transformative research in biology and information processing centered on paradigm changes in the epistemological, ontological, mathematical and computational bases of the science of living systems. Today, curiously, living systems cannot be said to be anything more than dissipative structures organized internally by genetic information. There is not anything substantially different from abiotic systems other than the empirical nature of their robustness. We believe that there are other new and unique properties and patterns comprehensible at this bio-logical level. The report lays out a fundamental set of approaches to articulate these properties and patterns, and is composed as follows. Sections 1 through 4 (preamble, introduction, motivation and major biomathematical problems) are incipient. Section 5 describes the issues affecting Integral Biomathics and Section 6 -- the aspects of the Grand Challenge we face with this project. Section 7 contemplates the effort to formalize a General Theory of Living Systems (GTLS) from what we have today. The goal is to have a formal system, equivalent to that which exists in the physics community. Here we define how to perceive the role of time in biology. Section 8 describes the initial efforts to apply this general theory of living systems in many domains, with special emphasis on crossdisciplinary problems and multiple domains spanning both “hard” and “soft” sciences. The expected result is a coherent collection of integrated mathematical techniques. Section 9 discusses the first two test cases, project proposals, of our approach. They are designed to demonstrate the ability of our approach to address “wicked problems” which span across physics, chemistry, biology, societies and societal dynamics. The solutions require integrated measurable results at multiple levels known as “grand challenges” to existing methods. Finally, Section 10 adheres to an appeal for action, advocating the necessity for further long-term support of the INBIOSA program. The report is concluded with preliminary non-exclusive list of challenging research themes to address, as well as required administrative actions. The efforts described in the ten sections of this White Paper will proceed concurrently. Collectively, they describe a program that can be managed and measured as it progresses
    corecore