149,375 research outputs found

    Person Re-identification And An Adversarial Attack And Defense For Person Re-identification Networks

    Get PDF
    Person re-identification (ReID) is the task of retrieving the same person, across different camera views or on the same camera view captured at a different time, given a query person of interest. There has been great interest and significant progress in person ReID, which is important for security and wide-area surveillance applications as well as human computer interaction systems. In order to continuously track targets across multiple cameras with disjoint views, it is essential to re-identify the same target across different cameras. This is a challenging task due to several reasons including changes in illumination and target appearance, and variations in camera viewpoint and camera intrinsic parameters. Brightness transfer function (BTF) was introduced for inter-camera color calibration, and to improve the performance of person ReID approaches. In this dissertation, we first present a new method to better model the appearance variation across disjoint camera views. We propose building a codebook of BTFs, which is composed of the most representative BTFs for a camera pair. We also propose an ordering and trimming criteria, based on the occurrence percentage of codeword triplets, to avoid using all combinations of codewords exhaustively for all color channels, and improve computational efficiency. Then, different from most existing work, we focus on a crowd-sourcing scenario to find and follow person(s) of interest in the collected images/videos. We propose a novel approach combining R-CNN based person detection with the GPU implementation of color histogram and SURF-based re-identification. Moreover, GeoTags are extracted from the EXIF data of videos captured by smart phones, and are displayed on a map together with the time-stamps. With the recent advances in deep neural networks (DNN), the state-of-the-art performance of person ReID has been improved significantly. However, latest works in adversarial machine learning have shown the vulnerabilities of DNNs against adversarial examples, which are carefully crafted images that are similar to original/benign images, but can deceive the neural network models. Neural network-based ReID approaches inherit the vulnerabilities of DNNs. We present an effective and generalizable attack model that generates adversarial images of people, and results in very significant drop in the performance of the existing state-of-the-art person re-identification models. The results demonstrate the extreme vulnerability of the existing models to adversarial examples, and draw attention to the potential security risks that might arise due to this in video surveillance. Our proposed attack is developed by decreasing the dispersion of the internal feature map of a neural network. We compare our proposed attack with other state-of-the-art attack models on different person re-identification approaches, and by using four different commonly used benchmark datasets. The experimental results show that our proposed attack outperforms the state-of-art attack models on the best performing person re-identification approaches by a large margin, and results in the most drop in the mean average precision values. We then propose a new method to effectively detect adversarial examples presented to a person ReID network. The proposed method utilizes parts-based feature squeezing to detect the adversarial examples. We apply two types of squeezing to segmented body parts to better detect adversarial examples. We perform extensive experiments over three major datasets with different attacks, and compare the detection performance of the proposed body part-based approach with a ReID method that is not parts-based. Experimental results show that the proposed method can effectively detect the adversarial examples, and has the potential to avoid significant decreases in person ReID performance caused by adversarial examples

    Person re-identification employing 3D scene information

    Get PDF
    International audienceThis paper addresses the person re-identification task applied in a real-world scenario. Finding people in a network of cameras is challenging due to significant variations in lighting conditions, different colour responses and different camera viewpoints. State of the art algorithms are likely to fail due to serious perspective and pose changes. Most of existing approaches try to cope with all these changes by applying metric learning tools to find a transfer function between a camera pair, while ignoring the body alignment issue. Additionally, this transfer function usually depends on the camera pair and requires labeled training data for each camera. This might be unattainable in a large camera network. In this paper we employ 3D scene information for minimising perspective distortions and estimating the target pose. The estimated pose is further used for splitting a target trajectory into the reliable chunks, each one with a uniform pose. These chunks are matched through a network of cameras using a previously learned metric pool. However, instead of learning transfer functions that cope with all appearance variations, we propose to learn a generic metric pool that only focuses on pose changes. This pool consists of metrics, each one learned to match a specific pair of poses, not being limited to a specific camera pair. Automatically estimated poses determine the proper metric, thus improving matching. We show that metrics learned using only a single camera can significantly improve the matching across the whole camera network, providing a scalable solution. We validated our approach on publicly available datasets demonstrating increase in the re-identification performance

    Unsupervised learning of generative topic saliency for person re-identification

    Get PDF
    (c) 2014. The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms.© 2014. The copyright of this document resides with its authors. Existing approaches to person re-identification (re-id) are dominated by supervised learning based methods which focus on learning optimal similarity distance metrics. However, supervised learning based models require a large number of manually labelled pairs of person images across every pair of camera views. This thus limits their ability to scale to large camera networks. To overcome this problem, this paper proposes a novel unsupervised re-id modelling approach by exploring generative probabilistic topic modelling. Given abundant unlabelled data, our topic model learns to simultaneously both (1) discover localised person foreground appearance saliency (salient image patches) that are more informative for re-id matching, and (2) remove busy background clutters surrounding a person. Extensive experiments are carried out to demonstrate that the proposed model outperforms existing unsupervised learning re-id methods with significantly simplified model complexity. In the meantime, it still retains comparable re-id accuracy when compared to the state-of-the-art supervised re-id methods but without any need for pair-wise labelled training data

    Pose-Normalized Image Generation for Person Re-identification

    Full text link
    Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address both problems by proposing a novel deep person image generation model for synthesizing realistic person images conditional on the pose. The model is based on a generative adversarial network (GAN) designed specifically for pose normalization in re-id, thus termed pose-normalization GAN (PN-GAN). With the synthesized images, we can learn a new type of deep re-id feature free of the influence of pose variations. We show that this feature is strong on its own and complementary to features learned with the original images. Importantly, under the transfer learning setting, we show that our model generalizes well to any new re-id dataset without the need for collecting any training data for model fine-tuning. The model thus has the potential to make re-id model truly scalable.Comment: 10 pages, 5 figure

    Person re-identification via efficient inference in fully connected CRF

    Full text link
    In this paper, we address the problem of person re-identification problem, i.e., retrieving instances from gallery which are generated by the same person as the given probe image. This is very challenging because the person's appearance usually undergoes significant variations due to changes in illumination, camera angle and view, background clutter, and occlusion over the camera network. In this paper, we assume that the matched gallery images should not only be similar to the probe, but also be similar to each other, under suitable metric. We express this assumption with a fully connected CRF model in which each node corresponds to a gallery and every pair of nodes are connected by an edge. A label variable is associated with each node to indicate whether the corresponding image is from target person. We define unary potential for each node using existing feature calculation and matching techniques, which reflect the similarity between probe and gallery image, and define pairwise potential for each edge in terms of a weighed combination of Gaussian kernels, which encode appearance similarity between pair of gallery images. The specific form of pairwise potential allows us to exploit an efficient inference algorithm to calculate the marginal distribution of each label variable for this dense connected CRF. We show the superiority of our method by applying it to public datasets and comparing with the state of the art.Comment: 7 pages, 4 figure
    • …
    corecore