14,008 research outputs found

    Learning Logic Programs by Discovering Higher-Order Abstractions

    Full text link
    Discovering novel abstractions is important for human-level AI. We introduce an approach to discover higher-order abstractions, such as map, filter, and fold. We focus on inductive logic programming, which induces logic programs from examples and background knowledge. We introduce the higher-order refactoring problem, where the goal is to compress a logic program by introducing higher-order abstractions. We implement our approach in STEVIE, which formulates the higher-order refactoring problem as a constraint optimisation problem. Our experimental results on multiple domains, including program synthesis and visual reasoning, show that, compared to no refactoring, STEVIE can improve predictive accuracies by 27% and reduce learning times by 47%. We also show that STEVIE can discover abstractions that transfer to different domain

    SPIDA: Abstracting and generalizing layout design cases

    Get PDF
    Abstraction and generalization of layout design cases generate new knowledge that is more widely applicable to use than specific design cases. The abstraction and generalization of design cases into hierarchical levels of abstractions provide the designer with the flexibility to apply any level of abstract and generalized knowledge for a new layout design problem. Existing case-based layout learning (CBLL) systems abstract and generalize cases into single levels of abstractions, but not into a hierarchy. In this paper, we propose a new approach, termed customized viewpoint - spatial (CV-S), which supports the generalization and abstraction of spatial layouts into hierarchies along with a supporting system, SPIDA (SPatial Intelligent Design Assistant)
    • …
    corecore