592,343 research outputs found

    Statistical Learning For System Identification, Estimation, And Control

    Get PDF
    Despite the recent widespread success of machine learning, we still do not fully understand its fundamental limitations. Going forward, it is crucial to better understand learning complexity, especially in critical decision making applications, where a wrong decision can lead to catastrophic consequences. In this thesis, we focus on the statistical complexity of learning unknown linear dynamical systems, with focus on the tasks of system identification, prediction, and control. We are interested in sample complexity, i.e. the minimum number of samples required to achieve satisfactory learning performance. Our goal is to provide finite-sample learning guarantees, explicitly highlighting how the learning objective depends on the number of samples. A fundamental question we are trying to answer is how system theoretic properties of the underlying process can affect sample complexity. Using recent advances in statistical learning, high-dimensional statistics, and control theoretic tools, we provide finite-sample guarantees in the following settings. i) System Identification. We provide the first finite-sample guarantees for identifying a stochastic partially-observed system; this problem is also known as the stochastic system identification problem. ii) Prediction. We provide the first end-to-end guarantees for learning the Kalman Filter, i.e. for learning to predict, in an offline learning architecture. We also provide the first logarithmic regret guarantees for the problem of learning the Kalman Filter in an online learning architecture, where the data are revealed sequentially. iii) Difficulty of System Identification and Control. Focusing on fully-observed systems, we investigate when learning linear systems is statistically easy or hard, in the finite sample regime. Statistically easy to learn linear system classes have sample complexity that is polynomial with the system dimension. Statistically hard to learn linear system classes have worst-case sample complexity that is at least exponential with the system dimension. We show that there actually exist classes of linear systems, which are hard to learn. Such classes include indirectly excited systems with large degree of indirect excitation. Similar conclusions hold for both the problem of system identification and the problem of learning to control

    Application of Sparse Identification of Nonlinear Dynamics for Physics-Informed Learning

    Get PDF
    Advances in machine learning and deep neural networks has enabled complex engineering tasks like image recognition, anomaly detection, regression, and multi-objective optimization, to name but a few. The complexity of the algorithm architecture, e.g., the number of hidden layers in a deep neural network, typically grows with the complexity of the problems they are required to solve, leaving little room for interpreting (or explaining) the path that results in a specific solution. This drawback is particularly relevant for autonomous aerospace and aviation systems, where certifications require a complete understanding of the algorithm behavior in all possible scenarios. Including physics knowledge in such data-driven tools may improve the interpretability of the algorithms, thus enhancing model validation against events with low probability but relevant for system certification. Such events include, for example, spacecraft or aircraft sub-system failures, for which data may not be available in the training phase. This paper investigates a recent physics-informed learning algorithm for identification of system dynamics, and shows how the governing equations of a system can be extracted from data using sparse regression. The learned relationships can be utilized as a surrogate model which, unlike typical data-driven surrogate models, relies on the learned underlying dynamics of the system rather than large number of fitting parameters. The work shows that the algorithm can reconstruct the differential equations underlying the observed dynamics using a single trajectory when no uncertainty is involved. However, the training set size must increase when dealing with stochastic systems, e.g., nonlinear dynamics with random initial conditions
    corecore