2,529 research outputs found

    Learning, Generalization, and Functional Entropy in Random Automata Networks

    Full text link
    It has been shown \citep{broeck90:physicalreview,patarnello87:europhys} that feedforward Boolean networks can learn to perform specific simple tasks and generalize well if only a subset of the learning examples is provided for learning. Here, we extend this body of work and show experimentally that random Boolean networks (RBNs), where both the interconnections and the Boolean transfer functions are chosen at random initially, can be evolved by using a state-topology evolution to solve simple tasks. We measure the learning and generalization performance, investigate the influence of the average node connectivity KK, the system size NN, and introduce a new measure that allows to better describe the network's learning and generalization behavior. We show that the connectivity of the maximum entropy networks scales as a power-law of the system size NN. Our results show that networks with higher average connectivity KK (supercritical) achieve higher memorization and partial generalization. However, near critical connectivity, the networks show a higher perfect generalization on the even-odd task

    Adaptation to criticality through organizational invariance in embodied agents

    Get PDF
    Many biological and cognitive systems do not operate deep within one or other regime of activity. Instead, they are poised at critical points located at phase transitions in their parameter space. The pervasiveness of criticality suggests that there may be general principles inducing this behaviour, yet there is no well-founded theory for understanding how criticality is generated at a wide span of levels and contexts. In order to explore how criticality might emerge from general adaptive mechanisms, we propose a simple learning rule that maintains an internal organizational structure from a specific family of systems at criticality. We implement the mechanism in artificial embodied agents controlled by a neural network maintaining a correlation structure randomly sampled from an Ising model at critical temperature. Agents are evaluated in two classical reinforcement learning scenarios: the Mountain Car and the Acrobot double pendulum. In both cases the neural controller appears to reach a point of criticality, which coincides with a transition point between two regimes of the agent's behaviour. These results suggest that adaptation to criticality could be used as a general adaptive mechanism in some circumstances, providing an alternative explanation for the pervasive presence of criticality in biological and cognitive systems.Comment: arXiv admin note: substantial text overlap with arXiv:1704.0525
    • …
    corecore