2,720 research outputs found

    TRANSDUCER FOR AUTO-CONVERT OF ARCHAIC TO PRESENT DAY ENGLISH FOR MACHINE READABLE TEXT: A SUPPORT FOR COMPUTER ASSISTED LANGUAGE LEARNING

    Get PDF
    There exist some English literary works where some archaic words are still used; they are relatively distinct from Present Day English (PDE). We might observe some archaic words that have undergone regular changing patterns: for instances, archaic modal verbs like mightst, darest, wouldst. The –st ending historically disappears, resulting on might, dare and would. (wouldst > would). However, some archaic words undergo distinct processes, resulting on unpredictable pattern; The occurrence frequency for archaic english pronouns like thee ‘you’, thy ‘your’, thyself ‘yourself’ are quite high. Students that are Non-Native speakers of English might come across many difficulties when they encounter English texts which include these kinds of archaic words. How might computer be a help for the student? This paper aims on providing some supports from the perspective of Computer Assisted Language Learning (CALL). It proposes some designs of lexicon transducers by using Local Grammar Graphs (LGG) for auto-convert of the archaic words to PDE in a literature machine readable text. The transducer is applied to a machine readable text that is taken from Sir Walter Scott’s Ivanhoe. The archaic words in the corpus can be converted automatically to PDE. The transducer also allows the presentation of the two forms (Arhaic and PDE), the PDE lexicons-only, or the original (Archaic Lexicons) form-only. This will help students in understanding English literature works better. All the linguistic resources here are machine readable, ready to use, maintainable and open for further development. The method might be adopted for lexicon tranducer for another language too

    Using NLP technology in CALL

    Get PDF
    This paper outlines the research and guiding research principles of the (I)CALL group at Dublin City University, Ireland. Our research activities include the development of (I)CALL systems targeted at a variety of user groups including advanced Romance language learners, intermediate to advanced German learners, primary and secondary school students as well as students with L1 learning disabilities requiring a variety of system types which cater to individual user needs and abilities. Suitable CL/NLP technology is incorporated where appropriate for the learner

    Introducing instrumentation and data acquisition to mechanical engineering students using LabVIEW

    Get PDF
    For several years, LabVIEW has been used within the Department of Mechanical Engineering at the University of Strathclyde as the basis for introducing the basic concepts and practice of data acquisition, and more generally, instrumentation, to postgraduate engineering students and undergraduate project students. The objectives of introducing LabVIEW within the curriculum were to expose students to instrumentation and experimental analysis, and to create courseware that could be used flexibly for a range of students. It was also important that staff time for laboratory work be kept to manageable levels. A course module was developed which allows engineering students with very little or no previous knowledge of instrumentation or programming to become acquainted with the basics of programming, experimentation and data acquisition. The basic course structure has been used to teach both undergraduates and postgraduates as well as laboratory technical staff. The paper describes the objectives of the use of LabVIEW for teaching, the structure of the module developed, and the response of students who have been subjected to the course, and how it is intended to expand the delivery to greater student numbers

    Error-tolerant Finite State Recognition with Applications to Morphological Analysis and Spelling Correction

    Get PDF
    Error-tolerant recognition enables the recognition of strings that deviate mildly from any string in the regular set recognized by the underlying finite state recognizer. Such recognition has applications in error-tolerant morphological processing, spelling correction, and approximate string matching in information retrieval. After a description of the concepts and algorithms involved, we give examples from two applications: In the context of morphological analysis, error-tolerant recognition allows misspelled input word forms to be corrected, and morphologically analyzed concurrently. We present an application of this to error-tolerant analysis of agglutinative morphology of Turkish words. The algorithm can be applied to morphological analysis of any language whose morphology is fully captured by a single (and possibly very large) finite state transducer, regardless of the word formation processes and morphographemic phenomena involved. In the context of spelling correction, error-tolerant recognition can be used to enumerate correct candidate forms from a given misspelled string within a certain edit distance. Again, it can be applied to any language with a word list comprising all inflected forms, or whose morphology is fully described by a finite state transducer. We present experimental results for spelling correction for a number of languages. These results indicate that such recognition works very efficiently for candidate generation in spelling correction for many European languages such as English, Dutch, French, German, Italian (and others) with very large word lists of root and inflected forms (some containing well over 200,000 forms), generating all candidate solutions within 10 to 45 milliseconds (with edit distance 1) on a SparcStation 10/41. For spelling correction in Turkish, error-tolerantComment: Replaces 9504031. gzipped, uuencoded postscript file. To appear in Computational Linguistics Volume 22 No:1, 1996, Also available as ftp://ftp.cs.bilkent.edu.tr/pub/ko/clpaper9512.ps.

    Consultation on proposed changes to the key stage 4 curriculum, May – July 2003

    Get PDF

    Criteria for the diploma qualifications in science at advanced level: principal learning

    Get PDF
    "The purpose of this document is to record a full set of criteria for level 3 principal learning qualifications for the Advanced Diploma in science. It also sets out the overall aims of the Diplomas in science." - purpose

    Spanish generation from Spanish Sign Language using a phrase-based translation system

    Get PDF
    This paper describes the development of a Spoken Spanish generator from Spanish Sign Language (LSE – Lengua de Signos Española) in a specific domain: the renewal of Identity Document and Driver’s license. The system is composed of three modules. The first one is an interface where a deaf person can specify a sign sequence in sign-writing. The second one is a language translator for converting the sign sequence into a word sequence. Finally, the last module is a text to speech converter. Also, the paper describes the generation of a parallel corpus for the system development composed of more than 4,000 Spanish sentences and their LSE translations in the application domain. The paper is focused on the translation module that uses a statistical strategy with a phrase-based translation model, and this paper analyses the effect of the alignment configuration used during the process of word based translation model generation. Finally, the best configuration gives a 3.90% mWER and a 0.9645 BLEU

    Electronics and control technology

    Get PDF
    Until recently, there was no requirement to learn electronics and control technology in the New Zealand school curriculum. Apart from isolated pockets of teaching based on the enthusiasm of individual teachers, there is very little direct learning of electronics in New Zealand primary or secondary schools. The learning of electronics is located in tertiary vocational training programmes. Thus, few school students learn about electronics and few school teachers have experience in teaching it. Lack of experience with electronics (other than using its products) has contributed to a commonly held view of electronics as out of the control and intellectual grasp of the average person; the domain of the engineer, programmer and enthusiast with his or her special aptitude. This need not be true, but teachers' and parents' lack of experience with electronics is in danger of denying young learners access to the mainstream of modern technology
    corecore