1,538 research outputs found

    Collaboration scripts - a conceptual analysis

    Get PDF
    This article presents a conceptual analysis of collaboration scripts used in face-to-face and computer-mediated collaborative learning. Collaboration scripts are scaffolds that aim to improve collaboration through structuring the interactive processes between two or more learning partners. Collaboration scripts consist of at least five components: (a) learning objectives, (b) type of activities, (c) sequencing, (d) role distribution, and (e) type of representation. These components serve as a basis for comparing prototypical collaboration script approaches for face-to-face vs. computer-mediated learning. As our analysis reveals, collaboration scripts for face-to-face learning often focus on supporting collaborators in engaging in activities that are specifically related to individual knowledge acquisition. Scripts for computer-mediated collaboration are typically concerned with facilitating communicative-coordinative processes that occur among group members. The two lines of research can be consolidated to facilitate the design of collaboration scripts, which both support participation and coordination, as well as induce learning activities closely related to individual knowledge acquisition and metacognition. In addition, research on collaboration scripts needs to consider the learnersโ€™ internal collaboration scripts as a further determinant of collaboration behavior. The article closes with the presentation of a conceptual framework incorporating both external and internal collaboration scripts

    Power to the Teachers:An Exploratory Review on Artificial Intelligence in Education

    Get PDF
    This exploratory review attempted to gather evidence from the literature by shedding light on the emerging phenomenon of conceptualising the impact of artificial intelligence in education. The review utilised the PRISMA framework to review the analysis and synthesis process encompassing the search, screening, coding, and data analysis strategy of 141 items included in the corpus. Key findings extracted from the review incorporate a taxonomy of artificial intelligence applications with associated teaching and learning practice and a framework for helping teachers to develop and self-reflect on the skills and capabilities envisioned for employing artificial intelligence in education. Implications for ethical use and a set of propositions for enacting teaching and learning using artificial intelligence are demarcated. The findings of this review contribute to developing a better understanding of how artificial intelligence may enhance teachers’ roles as catalysts in designing, visualising, and orchestrating AI-enabled teaching and learning, and this will, in turn, help to proliferate AI-systems that render computational representations based on meaningful data-driven inferences of the pedagogy, domain, and learner models

    Context based learning: a survey of contextual indicators for personalized and adaptive learning recommendations. A pedagogical and technical perspective

    Full text link
    Learning personalization has proven its effectiveness in enhancing learner performance. Therefore, modern digital learning platforms have been increasingly depending on recommendation systems to offer learners personalized suggestions of learning materials. Learners can utilize those recommendations to acquire certain skills for the labor market or for their formal education. Personalization can be based on several factors, such as personal preference, social connections or learning context. In an educational environment, the learning context plays an important role in generating sound recommendations, which not only fulfill the preferences of the learner, but also correspond to the pedagogical goals of the learning process. This is because a learning context describes the actual situation of the learner at the moment of requesting a learning recommendation. It provides information about the learner current state of knowledge, goal orientation, motivation, needs, available time, and other factors that reflect their status and may influence how learning recommendations are perceived and utilized. Context aware recommender systems have the potential to reflect the logic that a learning expert may follow in recommending materials to students with respect to their status and needs. In this paper, we review the state-of-the-art approaches for defining a user learning-context. We provide an overview of the definitions available, as well as the different factors that are considered when defining a context. Moreover, we further investigate the links between those factors and their pedagogical foundations in learning theories. We aim to provide a comprehensive understanding of contextualized learning from both pedagogical and technical points of view. By combining those two viewpoints, we aim to bridge a gap between both domains, in terms of contextualizing learning recommendations

    Computational and Robotic Models of Early Language Development: A Review

    Get PDF
    We review computational and robotics models of early language learning and development. We first explain why and how these models are used to understand better how children learn language. We argue that they provide concrete theories of language learning as a complex dynamic system, complementing traditional methods in psychology and linguistics. We review different modeling formalisms, grounded in techniques from machine learning and artificial intelligence such as Bayesian and neural network approaches. We then discuss their role in understanding several key mechanisms of language development: cross-situational statistical learning, embodiment, situated social interaction, intrinsically motivated learning, and cultural evolution. We conclude by discussing future challenges for research, including modeling of large-scale empirical data about language acquisition in real-world environments. Keywords: Early language learning, Computational and robotic models, machine learning, development, embodiment, social interaction, intrinsic motivation, self-organization, dynamical systems, complexity.Comment: to appear in International Handbook on Language Development, ed. J. Horst and J. von Koss Torkildsen, Routledg

    Designing for change: mash-up personal learning environments

    Get PDF
    Institutions for formal education and most work places are equipped today with at least some kind of tools that bring together people and content artefacts in learning activities to support them in constructing and processing information and knowledge. For almost half a century, science and practice have been discussing models on how to bring personalisation through digital means to these environments. Learning environments and their construction as well as maintenance makes up the most crucial part of the learning process and the desired learning outcomes and theories should take this into account. Instruction itself as the predominant paradigm has to step down. The learning environment is an (if not 'theรฏยฟยฝ) important outcome of a learning process, not just a stage to perform a 'learning play'. For these good reasons, we therefore consider instructional design theories to be flawed. In this article we first clarify key concepts and assumptions for personalised learning environments. Afterwards, we summarise our critique on the contemporary models for personalised adaptive learning. Subsequently, we propose our alternative, i.e. the concept of a mash-up personal learning environment that provides adaptation mechanisms for learning environment construction and maintenance. The web application mash-up solution allows learners to reuse existing (web-based) tools plus services. Our alternative, LISL is a design language model for creating, managing, maintaining, and learning about learning environment design; it is complemented by a proof of concept, the MUPPLE platform. We demonstrate this approach with a prototypical implementation and a โ€“ we think โ€“ comprehensible example. Finally, we round up the article with a discussion on possible extensions of this new model and open problems

    ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ์‚ฌ์šฉ์— ๋Œ€ํ•œ ์ค‘๊ตญ ๊ต์‚ฌ์˜ ์ธ์‹

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌ๋ฒ”๋Œ€ํ•™ ๊ต์œกํ•™๊ณผ, 2021. 2. ์กฐ์˜ํ™˜.์ตœ๊ทผ ๊ต์œก ๋ถ„์•ผ์—์„œ ์ธ๊ณต์ง€๋Šฅ(AI)์˜ ๋„์ž…์ด ํฐ ๊ด€์‹ฌ์„ ๋Œ๊ณ  ์žˆ๋‹ค. ํŠนํžˆ AI ๊ธฐ์ˆ ๊ณผ ํ•™์Šต ๋ถ„์„์ด ๊ฒฐํ•ฉํ•œ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์€ ์ง€๊ธˆ๊ป ์‹คํ˜„๋˜๊ธฐ ์–ด๋ ค์› ๋˜ ๋งž์ถคํ˜• ํ•™์Šต(personalized learning)๊ณผ ์ ์‘์  ํ•™์Šต(adaptive learning)์— ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋„๋ก ๋ฐœ์ „ํ•˜๊ณ  ์žˆ๋‹ค. ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ(AI-based education platform)์€ ํ•™์Šต์ž์˜ ํ–‰๋™ ์ถ”์  ๋“ฑ์„ ํ†ตํ•ด ์ด๋“ค์˜ ํŠน์„ฑ์„ ๋ถ„์„ํ•˜๊ณ  ์ง„๋‹จ์„ ์ œ๊ณตํ•œ ๋’ค ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ํ† ๋Œ€๋กœ ํ•™์Šต์ž์—๊ฒŒ ์ธ์ง€ ์ˆ˜์ค€์— ๋งž๋Š” ๋งž์ถคํ˜• ํ•™์Šต์ž์›๊ณผ ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•œ๋‹ค. ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์€ ๊ต์‚ฌ์™€ ํ•™์ƒ์—๊ฒŒ ์‹ค์‹œ๊ฐ„ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ๋ถ„์„ ๊ฒฐ๊ณผ, ๊ทธ๋ฆฌ๊ณ  ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์–ด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๋งž์ถคํ˜• ํ•™์Šต์— ๊ธ์ •์ ์ธ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค๋Š” ์„ ํ–‰ ์—ฐ๊ตฌ๋„ ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ๋ชจ๋ธ ๊ฐœ๋ฐœ์˜ ์ฐจ์›์—์„œ๋‚˜ ์—„๋ฐ€ํ•œ ์‹คํ—˜์‹ค ํ™˜๊ฒฝ์—์„œ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ํšจ๊ณผ๋ฅผ ์—ฐ๊ตฌํ•ด์™”์œผ๋ฉฐ, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์— ๋Œ€ํ•œ ๊ต์‚ฌ์˜ ์ธ์‹๊ณผ ๊ด€๋ จ๋œ ์—ฐ๊ตฌ๋Š” ๋“œ๋ฌผ์—ˆ๋‹ค. ๊ต์‚ฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ๊ธฐ์ˆ ์˜ ์‚ฌ์šฉ์ž์ด๊ธฐ ๋•Œ๋ฌธ์— ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ๊ธฐ์ˆ ์˜ ๊ต์œก ๋„์ž…์— ์žˆ์–ด ๊ต์‚ฌ๋“ค์˜ ์ธ์‹๊ณผ ์˜๊ฒฌ์€ ์ค‘์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์— ๋Œ€ํ•œ ๊ต์‚ฌ๋“ค์˜ ์ธ์‹์„ ํƒ๊ตฌํ•˜์˜€๋‹ค. ์•„๋ž˜ ์—ฐ๊ตฌ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•ด ์งˆ์  ์—ฐ๊ตฌ๋ฅผ ์‹œํ–‰ํ•˜์˜€๋‹ค. ์ฒซ์งธ, ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ์ค‘ํ•™๊ต ๊ต์œก์— ํ™œ์šฉ ์žˆ์–ด ์–ด๋– ํ•œ ์žฅ์ ์ด ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜๋Š”๊ฐ€? ๋‘˜์งธ, ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ๊ณผ ์ค‘ํ•™๊ต ๊ต์ˆ˜ ํ™œ๋™ ์š”์†Œ ๊ฐ„ ์–ด๋– ํ•œ ๋ชจ์ˆœ์ด ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜๋Š”๊ฐ€? ์…‹์งธ, ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ์ค‘ํ•™๊ต ๊ต์œก์— ๋„์ž…ํ•  ๋•Œ ๋ฌด์—‡์ด ํ•„์š”ํ•˜๋‹ค๊ณ  ์ธ์‹ํ•˜๋Š”๊ฐ€? ๋ณธ ์—ฐ๊ตฌ๋Š” ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์„ ์—ฐ๊ตฌ๋Œ€์ƒ์œผ๋กœ ์˜จ๋ผ์ธ ์‹ฌ์ธต ๋ฉด๋‹ด์„ ํ•˜์˜€๋‹ค. ๋ฌธํ—Œ ๋ฆฌ๋ทฐ๋ฅผ ํ†ตํ•ด ๋ฉด๋‹ด ์งˆ๋ฌธ์ง€๋ฅผ ์„ค๊ณ„ํ•˜๋˜ ๋ˆˆ๋ฉ์ดํ‘œ์ง‘๋ฒ• (snowball sampling)์„ ํ†ตํ•ด ์ค‘๊ตญ ์ค‘ํ•™๊ต ๊ต์‚ฌ 14๋ช…์„ ์—ฐ๊ตฌ์ฐธ์—ฌ์ž๋กœ ์„ ์ •ํ•˜์˜€๋‹ค. ์„ ์ •๋œ ๊ต์‚ฌ๋“ค์€ ๋ชจ๋‘ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ์‚ฌ์šฉ ๊ฒฝํ—˜์ด ์žˆ์œผ๋ฉฐ ๊ฐ ๊ต์‚ฌ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์•ฝ 1์‹œ๊ฐ„ ์ •๋„ ๋ฉด๋‹ด์„ ์ง„ํ–‰ํ•˜๊ณ  ๋…น์Œํ•˜์˜€๋‹ค. ๋ฉด๋‹ด์ด ๋๋‚œ ํ›„ ๋…น์Œ ๋‚ด์šฉ์„ ์ „์‚ฌํ•˜์˜€์œผ๋ฉฐ, ์ฃผ์ œ๋ถ„์„์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฉด๋‹ด ๋‚ด์šฉ์„ ์ดˆ๊ธฐ ์ฝ”๋“œ ์ƒ์„ฑํ•˜๊ณ  ๋ฉด๋‹ด ์ž๋ฃŒ ์†์—์„œ ์ฃผ์ œ๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ํŠนํžˆ ์—ฐ๊ตฌ ๋ฌธ์ œ 2๋ฒˆ์˜ ๊ฒฝ์šฐ, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ํ™œ์šฉ๊ณผ ๊ต์ˆ˜ ํ•™์Šตํ™œ๋™ ๋‚ด ์—ฌ๋Ÿฌ ์š”์†Œ ๊ฐ„์˜ ๋ชจ์ˆœ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ํ™œ๋™์ด๋ก ์„ ์—ฐ๊ตฌ์˜ ํ‹€๋กœ ์ด์šฉํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ์—ฐ๊ตฌ๋ฌธ์ œ 1์— ๋Œ€ํ•œ ์ฃผ์ œ 4๊ฐœ, ์—ฐ๊ตฌ๋ฌธ์ œ 2์— ๋Œ€ํ•œ ์ฃผ์ œ 6๊ฐœ, ์—ฐ๊ตฌ๋ฌธ์ œ 3์— ๋Œ€ํ•œ ์ฃผ์ œ 4๊ฐœ๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋กœ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ์žฅ์ ์— ๋Œ€ํ•ด ์ฆ‰๊ฐ์ ์ธ ํ”ผ๋“œ๋ฐฑ ์ œ๊ณต, ๊ต์ˆ˜ํ•™์Šต ์ง€์›, ๊ต์‚ฌ์˜ ์—…๋ฌด๋Ÿ‰ ๊ฐ์†Œ ๋“ฑ์œผ๋กœ ์ธ์‹ํ•˜์˜€๊ณ , ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๋‹ค์–‘ํ•œ ๊ต์ˆ˜ํ•™์Šต ์ž์›์„ ํ†ตํ•ฉํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ์•„์šธ๋Ÿฌ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ์‚ฌ์šฉ์— ์žˆ์–ด ๊ธฐ์กด์˜ ๊ต์ˆ˜ํ•™์Šต ํ™œ๋™๊ณผ ์ƒ์ถฉ๋œ ๋ถ€๋ถ„์ด ์žˆ๋‹ค๋Š” ์ ์„ ์ธ์‹ํ•˜์˜€๋‹ค. ๊ต์‚ฌ๋“ค์€ ๊ธฐ์กด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ์ถ”์ฒœ ๋ชจ๋ธ์ด ์ฐจ๋ณ„ํ™”๋œ ํ•™์ƒ๋“ค์—๊ฒŒ ์ž˜ ์ ์šฉ๋˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์ธ์‹ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ธฐ์กด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๋‹ค์–‘ํ•œ ํ•™์Šต ์ž์›์„ ์ž˜ ๋ถ„๋ฅ˜๋˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ต์‚ฌ๋“ค์ด ์‚ฌ์šฉํ•˜๊ธฐ ๋ถˆํŽธํ•˜๋‹ค. ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ์ด์šฉํ•  ๋•Œ ๊ต์‚ฌ์˜ ์ง€์ ์žฌ์‚ฐ๊ถŒ์„ ๋ณดํ˜ธํ•˜๊ธฐ ์œ„ํ•œ ๋ช…ํ™•ํ•œ ๊ทœ์ œ๊ฐ€ ๋ถ€์กฑํ•˜๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ์ด์™€ ํ•จ๊ป˜ ํ•™๋ถ€๋ชจ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ํ•™์Šต์ž์˜ ์ธํ„ฐ๋„ท ๋‚จ์šฉ๊ณผ ์‹œ๋ ฅ ์ €ํ•˜ ๋ฌธ์ œ๋ฅผ ์šฐ๋ คํ•˜์˜€๋‹ค. ๋˜ ์ค‘๊ตญ์˜ ์‚ฌํšŒ๋ฌธํ™”์  ๋ฐฐ๊ฒฝ๊ณผ ๊ต์œก ํŠน์„ฑ์œผ๋กœ ์ธํ•ด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ํ™œ์šฉํ•˜๋Š” ๋ฐ ํ•™์ƒ๋“ค์˜ ๊ธ€์”จ ์“ฐ๊ธฐ ๋Šฅ๋ ฅ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํ•™๊ต ๋‚ด ์ „์ž๊ธฐ๊ธฐ ์‚ฌ์šฉ ์ œํ•œ๋„ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์˜ ์ง€์†์„ฑ๊ณผ ํšจ์œจ์„ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ๊ต์‚ฌ๋“ค์€ ์œ„์˜ ๋ฌธ์ œ๋“ค์ด ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ํ”Œ๋žซํผ ์‚ฌ์šฉ์— ๋Œ€ํ•œ ๊ทœ์น™ ๋งˆ๋ จ๊ณผ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ ์„ ๊ฐœ์„ ํ•จ์œผ๋กœ์จ ์™„ํ™”๋  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ต์‚ฌ์˜ ์‹ค์ œ ์š”๊ตฌ์— ๋งž๊ฒŒ ๊ฐœ๋ฐœ๋  ์ˆ˜ ์žˆ๋„๋ก ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ๊ฐœ๋ฐœ ๊ณผ์ •์— ๊ต์œก ์ „๋ฌธ๊ฐ€์™€ ๊ต์‚ฌ๊ฐ€ ์ฐธ์—ฌํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์ด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์— ๋Œ€ํ•œ ์ธ์‹์„ ํƒ์ƒ‰ํ•˜์˜€์œผ๋ฉฐ, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๊ต์ˆ˜ํ•™์Šต์—์„œ์˜ ์žฅ์ ๊ณผ ๋ฌธ์ œ์ ์„ ๋ฐํ˜”๋‹ค. ์•„์šธ๋Ÿฌ ๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๊ต์œก ๋ถ„์•ผ์— ๋Œ€๊ทœ๋ชจ๋กœ ๋„์ž…๋  ์ˆ˜ ์žˆ๋„๋ก ๊ทœ์น™, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ , ๊ทธ๋ฆฌ๊ณ  ๊ต์œก ๊ณตํ•™์˜ ์ฐจ์›์—์„œ ์‚ฌ์šฉ ๊ทœ๋ฒ”๊ณผ ๊ธฐ์ˆ  ๊ฐœ์„ ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ํƒ์ƒ‰ํ•œ ๋‚ด์šฉ์ด ํ–ฅํ›„ ๊ต์œก ๋ถ„์•ผ์˜ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ๋„์ž…์— ํ™œ์šฉ๋œ๋‹ค๋ฉด ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ๊ธฐ์ˆ ์— ๊ด€ํ•œ ์—ฐ๊ตฌ์˜ ๋ฐœ์ „์—๋„ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.In recent years, the introduction of artificial intelligence (AI) in education has attracted widespread attention. In particular, the AI-based education platform based on the combination of AI technology and learning analysis brings new light to the long-standing difficulties in personalized learning and adaptive learning. The AI-based education platform analyzes learners' characteristics by collecting their data and tracking their learning behavior. It then generates cognitive diagnosis for learners and provides them with personalized learning resources and adaptive feedback that match their cognitive level based on systematic analysis. With the help of the AI-based education platform, teachers and students can get real-time educational data and analysis result๏ผŒas well as the feedback and treatment corresponding to the results. Previous studies have already demonstrated and proved its positive significance to personalized learning. However, these studies mostly start from a model development perspective or in a rigorous laboratory environment. There has been little research on teachers' perceptions of AI-based education platform. As a direct user of AI educational technologies, teachers' perceptions and suggestions are vital for introducing AIEd in education. In this study, the researcher explored teachers' perceptions of using AI-based education platform in teaching. The study conducted qualitative research to address the following research questions: 1) How do Chinese teachers perceive the advantages of AI-based education platforms for teaching and learning in secondary school? 2) How do Chinese teachers perceive the contradictions between AI-based education platforms and the secondary school system? 3๏ผ‰How do Chinese teachers suggest applying AI-based education platforms in secondary school? And it referred to the in-depth online interview with Chinese teachers who had experience with AI-based education platform. Interview questions were constructed through the literature review, and 14 secondary school teachers were selected by the snowball sampling method. The interviews lasted for an average of one hour per teacher and were transcribed from the audio recordings to text documents when finished. Afterward, the data were analyzed using thematic analysis, including generating initial codes, searching and reviewing the categories, and deriving the themes finally. Notably, for research question two, the researcher used the activity theory framework to analyze the contradictions among the use of the AI-based education platform and the various elements of the teaching and learning activities. Finally, four themes for research question 1, six themes for research question 2, and four themes for research question 3 were derived. As for the advantages, teachers believe that AI-based education platforms can provide instant feedback, targeted and systematic teaching support, and reduce teachers' workload. At the same time, AI-based education platforms can also integrate teaching resources in different areas. Teachers also recognized that the AI-based education platforms might trigger contradictions in existing teaching activities. They are aware of the situation that the recommended model of the AI-based education platform is not suitable for all levels of students; that a large number of learning resources are not classified properly enough to meet the needs of teachers, and that there lack clear rules and regulations to protect teachers' intellectual property rights when using the platform. Besides, parents are also concerned about the potential risk of internet addiction and vision problems using AI-based education platforms. Moreover, the use of the AI-based education platform may also affect students' ability to write Chinese characters due to the socio-historical background and educational characteristics in China. Furthermore, the restricted use of electronic devices on campus may also impact the consistent and effective education data collection. Teachers believe that these problems can be solved by improving rules and AI technology. Moreover, to make the platform more in line with the actual teaching requirements, teachers and education experts can also be involved in the development process of AI-based education platform. This study explored how Chinese teachers perceive the AI-based education platform and found that the AI-based education platform was conducive to personalized teaching and learning. At the same time, this study put forward some suggestions from the perspective of rules, AI technology, and educational technology, hoping to provide a good value for the future large-scale introduction of AI-based education platforms in education.CHAPTER 1. INTRODUCTION 1 1.1. Problem Statement 1 1.2. Purpose of Research 7 1.3. Definition of Terms 8 CHAPTER 2. LITERATURE REVIEW 10 2.1. AI in Education 10 2.1.1 AI for Learning and Teaching 10 2.1.2 AI-based Education Platform 14 2.1.3 Teachers' Perception on AI-based Education Platform 18 2.2. Activity Theory 20 CHAPTER 3. RESEARCH METHOD 23 3.1. Research Design 23 3.2. Participants 25 3.3. Instrumentation 26 3.3.1 Potential Value of AI System in Education 26 3.4. Data Collection 33 3.5. Data Analysis 34 CHAPTER 4. FINDINGS 36 4.1. Advantages of Using AI-based Education Platform 36 4.1.1 Instant Feedback 37 4.1.2 Targeted and Systematic Teaching Support 42 4.1.3 Educational Resources Sharing 46 4.1.4 Reducing Workload 49 4.2. Tensions of Using AI-based Education Platform 51 4.2.1 Inadequately Meet the Needs of Teachers 52 4.2.2 Failure to Satisfy Low and High Achievers 54 4.2.3 Intellectual Property Violation 56 4.2.4 Guardian's Concern 57 4.2.5 School Rules about the Use of Electronic Devices 58 4.2.6 Implication for Chinese Character Education 59 4.3. Suggestion of Using AI-based Education Platform 61 4.3.1 Improving Rules of Using the AI-based Education Platform 61 4.3.2 Improving Rules of Protecting Teachers Right 62 4.3.3 Improving AI Technology 64 4.3.4 Participatory Design 66 CHAPTER 5. DISCUSSION AND CONCLUSION 68 5.1. Discussion 68 5.2. Conclusion 72 REFERENCE 75 APPENDIX 1 98 APPENDIX 2 100 ๊ตญ๋ฌธ์ดˆ๋ก 112Maste
    • โ€ฆ
    corecore