2,131 research outputs found

    Collaborative trails in e-learning environments

    Get PDF
    This deliverable focuses on collaboration within groups of learners, and hence collaborative trails. We begin by reviewing the theoretical background to collaborative learning and looking at the kinds of support that computers can give to groups of learners working collaboratively, and then look more deeply at some of the issues in designing environments to support collaborative learning trails and at tools and techniques, including collaborative filtering, that can be used for analysing collaborative trails. We then review the state-of-the-art in supporting collaborative learning in three different areas – experimental academic systems, systems using mobile technology (which are also generally academic), and commercially available systems. The final part of the deliverable presents three scenarios that show where technology that supports groups working collaboratively and producing collaborative trails may be heading in the near future

    Designing electronic collaborative learning environments

    Get PDF
    Electronic collaborative learning environments for learning and working are in vogue. Designers design them according to their own constructivist interpretations of what collaborative learning is and what it should achieve. Educators employ them with different educational approaches and in diverse situations to achieve different ends. Students use them, sometimes very enthusiastically, but often in a perfunctory way. Finally, researchers study them and—as is usually the case when apples and oranges are compared—find no conclusive evidence as to whether or not they work, where they do or do not work, when they do or do not work and, most importantly, why, they do or do not work. This contribution presents an affordance framework for such collaborative learning environments; an interaction design procedure for designing, developing, and implementing them; and an educational affordance approach to the use of tasks in those environments. It also presents the results of three projects dealing with these three issues

    Online discussion compensates for suboptimal timing of supportive information presentation in a digitally supported learning environment

    Get PDF
    This study used a sequential set-up to investigate the consecutive effects of timing of supportive information presentation (information before vs. information during the learning task clusters) in interactive digital learning materials (IDLMs) and type of collaboration (personal discussion vs. online discussion) in computer-supported collaborative learning (CSCL) on student knowledge construction. Students (N = 87) were first randomly assigned to the two information presentation conditions to work individually on a case-based assignment in IDLM. Students who received information during learning task clusters tended to show better results on knowledge construction than those who received information only before each cluster. The students within the two separate information presentation conditions were then randomly assigned to pairs to discuss the outcomes of their assignments under either the personal discussion or online discussion condition in CSCL. When supportive information had been presented before each learning task cluster, online discussion led to better results than personal discussion. When supportive information had been presented during the learning task clusters, however, the online and personal discussion conditions had no differential effect on knowledge construction. Online discussion in CSCL appeared to compensate for suboptimal timing of presentation of supportive information before the learning task clusters in IDLM

    Regulation of collaboration in project-based learning mediated by CSCL scripting reflection

    Get PDF
    Many studies attempt to effectively support student regulation of collaboration using CSCL tools to enrich learning outcomes. However, few studies are aimed at facilitating development of students' internal scripts for regulation of collaboration. This study focuses on developing and evaluating a computer-mediated learning environment for project-based learning to facilitate student internal scripts for regulation by designing external scripts for effective reflection. Forty- eight first-year university students participated in this study as part of their curriculum. Our analyses of their internal scripts before and after PBL participation revealed that significantly more students who encountered an unfamiliar situation during collaboration constructed new regulation scripts. Moreover, in case studies, we found that students augmented their scripts for socially shared regulation when recognizing socio-cognitive challenges, whereas they augmented co-regulation and self-regulation scripts when recognizing socio-emotional challenges.Peer reviewe

    Computer-Supported Collaborative Learning using Augmented and Virtual Reality in Museum Education

    Get PDF
    Recent advancements in the cost, availability, and capability of augmented reality (AR) and virtual reality (VR) devices and software are spurring their mass distribution to the public. This fundamental shift in the use of AR and VR predominantly from military and academic research laboratories to the public presents new opportunities and challenges for the design of instructional technology. While studies of AR and VR have been conducted to inform the design of individual instructional products, few studies have focused on computer-supported collaborative learning (CSCL) products in which AR and VR learners work together toward shared learning goals. The museum education industry possesses unique and inherent characteristics that position it as a strong candidate for the development and deployment of CSCL-ARVR products. Tourism locations, such as museums, provide an exemplary environment for advanced learning technology experimentation in which information technology infrastructure and programs of instruction are often already in place and in which many tourists already possess smartphones and or tablets that may be used to mediate location-based educational experiences. The goal was to conduct formative research to develop a tentative instructional design theory that can be used to guide the creation of CSCL-ARVR instructional products. Instructional design theory and software engineering practices were applied to guide the design of a CSCL-ARVR instructional product prototype to support museum education. The prototype, named Co-Tour, was designed and developed to enable remotely-located VR participants to collaborate with AR participants located within a tourism location to jointly navigate the location, examine exhibits and answer questions about exhibits related to a problem-based learning instance. Formative data were collected and analyzed, and the results were used to develop a tentative instructional design theory. Mixed Reality Museum Co-Visit Theory is proposed to inform the design and development of CSCL-ARVR co-visitation experiences for museums. A theoretical framework was developed and was informed by CSCL, game-based learning, social constructivist theory, flow theory, and the construct of camaraderie. Five values supporting the goal were elaborated to guide theory methods production including fostering of collaboration, leveraging of informal learning activities, incorporation of motivational elements, favoring of loose organization, and provision an effective user interface. Future research should focus upon replication towards validation and generalizability of results and upon the broader museum going population

    From mirroring to guiding: A review of the state of art technology for supporting collaborative learning

    Get PDF
    We review systems that support the management of collaborative interaction, and propose a classification framework built on a simple model of coaching. Our framework distinguishes between mirroring systems, which display basic actions to collaborators, metacognitive tools, which represent the state of interaction via a set of key indicators, and coaching systems, which offer advice based on an interpretation of those indicators. The reviewed systems are further characterized by the type of interaction data they assimilate, the processes they use for deriving higher-level data representations, and the type of feedback they provide to users

    Out there and in here: design for blended scientific inquiry learning

    No full text
    One of the benefits of mobile technologies is to combine ‘the digital’ (e.g., data, information, photos) with ‘field’ experiences in novel ways that are contextualized by people’s current located activities. However, often cost, mobility disabilities and time exclude students from engaging in such peripatetic experiences. The Out There and In Here project, is exploring a combination of mobile and tabletop technologies in support for collaborative learning. A system is being developed for synchronous collaboration between geology students in the field and peers at an indoor location. The overarching goal of this research is to develop technologies that support people working together in a suitable manner for their locations. There are two OTIH project research threads. The first deals with disabled learner access issues: these complex issues are being reviewed in subsequent evaluations and publications. This paper will deal with issues of technology supported learning design for remote and co-located science learners. Several stakeholder evaluations and two field trials have reviewed two research questions: 1. What will enhance the learning experience for those in the field and laboratory? 2. How can learning trajectories and appropriate technologies be designed to support equitable co-located and remote learning collaboration? This paper focuses on describing the iterative linked development of technologies and scientific inquiry pedagogy. Two stages within the research project are presented. The 1st stage details several pilot studies over 3 years with 21 student participants in synchronous collaborations with traditional technology and pedagogical models. Findings revealed that this was an engaging and useful experience although issues of equity in collaboration needed further research. The 2nd stage, in this project, has been to evaluate data from over 25 stakeholders (academics, learning and technology designers) to develop pervasive ambient technological solutions supporting orchestration of mixed levels of pedagogy (i.e. abstract synthesis to specific investigation). Middleware between tabletop ‘surface’ technologies and mobile devices are being designed with Microsoft and OOKL (a mobile software company) to support these developments. Initial findings reveal issues around equity, ownership and professional identity

    Towards a Framework for CSCL Research

    Get PDF
    Although collaborative learning, often supported by computer networks (widely called computer supported collaborative learning, or CSCL) is currently being implemented at all levels of education, it has not always proven to be the wonder-tool that educators envisioned and has often not lived up to the high expectations that educators had for it. In this introduction to the special issue on computer supported collaborative learning (CSCL), a framework for research on CSCL is presented. This framework is presented in the form of a 3 X 3 X 3 cube, with the dimensions Level of Learning (cognitive, social, and motivational), Unit of Learning (individual, group/team, and community) and Pedagogical measures (interactive, representational, and guiding). Based on this framework, the different contributions are discussed, and the empty cells - which should form the basis for further theoretical research – become evident

    Collaboration in the Semantic Grid: a Basis for e-Learning

    Get PDF
    The CoAKTinG project aims to advance the state of the art in collaborative mediated spaces for the Semantic Grid. This paper presents an overview of the hypertext and knowledge based tools which have been deployed to augment existing collaborative environments, and the ontology which is used to exchange structure, promote enhanced process tracking, and aid navigation of resources before, after, and while a collaboration occurs. While the primary focus of the project has been supporting e-Science, this paper also explores the similarities and application of CoAKTinG technologies as part of a human-centred design approach to e-Learning
    corecore