64 research outputs found

    Investigating hybrids of evolution and learning for real-parameter optimization

    Get PDF
    In recent years, more and more advanced techniques have been developed in the field of hybridizing of evolution and learning, this means that more applications with these techniques can benefit from this progress. One example of these advanced techniques is the Learnable Evolution Model (LEM), which adopts learning as a guide for the general evolutionary search. Despite this trend and the progress in LEM, there are still many ideas and attempts which deserve further investigations and tests. For this purpose, this thesis has developed a number of new algorithms attempting to combine more learning algorithms with evolution in different ways. With these developments, we expect to understand the effects and relations between evolution and learning, and also achieve better performances in solving complex problems. The machine learning algorithms combined into the standard Genetic Algorithm (GA) are the supervised learning method k-nearest-neighbors (KNN), the Entropy-Based Discretization (ED) method, and the decision tree learning algorithm ID3. We test these algorithms on various real-parameter function optimization problems, especially the functions in the special session on CEC 2005 real-parameter function optimization. Additionally, a medical cancer chemotherapy treatment problem is solved in this thesis by some of our hybrid algorithms. The performances of these algorithms are compared with standard genetic algorithms and other well-known contemporary evolution and learning hybrid algorithms. Some of them are the CovarianceMatrix Adaptation Evolution Strategies (CMAES), and variants of the Estimation of Distribution Algorithms (EDA). Some important results have been derived from our experiments on these developed algorithms. Among them, we found that even some very simple learning methods hybridized properly with evolution procedure can provide significant performance improvement; and when more complex learning algorithms are incorporated with evolution, the resulting algorithms are very promising and compete very well against the state of the art hybrid algorithms both in well-defined real-parameter function optimization problems and a practical evaluation-expensive problem

    A review on probabilistic graphical models in evolutionary computation

    Get PDF
    Thanks to their inherent properties, probabilistic graphical models are one of the prime candidates for machine learning and decision making tasks especially in uncertain domains. Their capabilities, like representation, inference and learning, if used effectively, can greatly help to build intelligent systems that are able to act accordingly in different problem domains. Evolutionary algorithms is one such discipline that has employed probabilistic graphical models to improve the search for optimal solutions in complex problems. This paper shows how probabilistic graphical models have been used in evolutionary algorithms to improve their performance in solving complex problems. Specifically, we give a survey of probabilistic model building-based evolutionary algorithms, called estimation of distribution algorithms, and compare different methods for probabilistic modeling in these algorithms

    Xqx Based Modeling For General Integer Programming Problems

    Get PDF
    We present a new way to model general integer programming (IP) problems with in- equality and equality constraints using XQX. We begin with the definition of IP problems folloby their practical applications, and then present the existing XQX based models to handle such problems. We then present our XQX model for general IP problems (including binary IP) with equality and inequality constraints, and also show how this model can be applied to problems with just inequality constraints. We then present the local optima based solution procedure for our XQX model. We also present new theorems and their proofs for our XQX model. Next, we present a detailed literature survey on the 0-1 multidimensional knapsack problem (MDKP) and apply our XQX model using our simple heuristic procedure to solve benchmark problems. The 0-1 MDKP is a binary IP problem with inequality con- straints and variables with binary values. We apply our XQX model using a heuristics we developed on 0-1 MDKP problems of various sizes and found that our model can handle any problem sizes and can provide reasonable quality results in reasonable time. Finally, we apply our XQX model developed for general integer programming problems on the general multi-dimensional knapsack problems. The general MDKP is a general IP problem with inequality constraints where the variables are positive integers. We apply our XQX model on GMDKP problems of various sizes and find that it can provide reasonable quality results in reasonable time. We also find that it can handle problems of any size and provide fea- sible and good quality solutions irrespective of the starting solutions. We conclude with a discussion of some issues related with our XQX model

    From metaheuristics to learnheuristics: Applications to logistics, finance, and computing

    Get PDF
    Un gran nombre de processos de presa de decisions en sectors estratègics com el transport i la producció representen problemes NP-difícils. Sovint, aquests processos es caracteritzen per alts nivells d'incertesa i dinamisme. Les metaheurístiques són mètodes populars per a resoldre problemes d'optimització difícils en temps de càlcul raonables. No obstant això, sovint assumeixen que els inputs, les funcions objectiu, i les restriccions són deterministes i conegudes. Aquests constitueixen supòsits forts que obliguen a treballar amb problemes simplificats. Com a conseqüència, les solucions poden conduir a resultats pobres. Les simheurístiques integren la simulació a les metaheurístiques per resoldre problemes estocàstics d'una manera natural. Anàlogament, les learnheurístiques combinen l'estadística amb les metaheurístiques per fer front a problemes en entorns dinàmics, en què els inputs poden dependre de l'estructura de la solució. En aquest context, les principals contribucions d'aquesta tesi són: el disseny de les learnheurístiques, una classificació dels treballs que combinen l'estadística / l'aprenentatge automàtic i les metaheurístiques, i diverses aplicacions en transport, producció, finances i computació.Un gran número de procesos de toma de decisiones en sectores estratégicos como el transporte y la producción representan problemas NP-difíciles. Frecuentemente, estos problemas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurísticas son métodos populares para resolver problemas difíciles de optimización de manera rápida. Sin embargo, suelen asumir que los inputs, las funciones objetivo y las restricciones son deterministas y se conocen de antemano. Estas fuertes suposiciones conducen a trabajar con problemas simplificados. Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento. Las simheurísticas integran simulación en metaheurísticas para resolver problemas estocásticos de una manera natural. De manera similar, las learnheurísticas combinan aprendizaje estadístico y metaheurísticas para abordar problemas en entornos dinámicos, donde los inputs pueden depender de la estructura de la solución. En este contexto, las principales aportaciones de esta tesis son: el diseño de las learnheurísticas, una clasificación de trabajos que combinan estadística / aprendizaje automático y metaheurísticas, y varias aplicaciones en transporte, producción, finanzas y computación.A large number of decision-making processes in strategic sectors such as transport and production involve NP-hard problems, which are frequently characterized by high levels of uncertainty and dynamism. Metaheuristics have become the predominant method for solving challenging optimization problems in reasonable computing times. However, they frequently assume that inputs, objective functions and constraints are deterministic and known in advance. These strong assumptions lead to work on oversimplified problems, and the solutions may demonstrate poor performance when implemented. Simheuristics, in turn, integrate simulation into metaheuristics as a way to naturally solve stochastic problems, and, in a similar fashion, learnheuristics combine statistical learning and metaheuristics to tackle problems in dynamic environments, where inputs may depend on the structure of the solution. The main contributions of this thesis include (i) a design for learnheuristics; (ii) a classification of works that hybridize statistical and machine learning and metaheuristics; and (iii) several applications for the fields of transport, production, finance and computing

    Algoritmos exatos e heurísticos para o problema da diversidade máxima

    Get PDF
    In this work, we suggest Branch-and-Cut algorithms and Lagrangian heuristics for the Maximum Diversity Problem. We use a standard formulation reinforced by some valid inequalities for the problem. These are dynamically dualized in the heuristics and used as cuts in the exact methods. To separate them efficiently, we propose some heuristic procedures. In addition, we perform computational tests and compare our exact and heuristics methods with those found in the literature for the problem.Neste trabalho, propomos algoritmos Branch-and-Cut e heurísticas Lagrangeanas para o Problema da Máxima Diversidade. Utilizamos uma formulação linear padrão fortalecida por desigualdades válidas para o problema. Estas são dualizadas dinamicamente nas heurísticas e utilizadas como cortes nos algoritmos exatos. Para tanto, propomos alguns procedimentos heurísticos para separá-las de maneira eficiente. Adicionalmente, realizamos testes computacionais e comparamos nossos algoritmos exatos e heurísticos com aqueles existentes na literatura para o problema

    Pretraining in Deep Reinforcement Learning: A Survey

    Full text link
    The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions

    Multivariate Markov networks for fitness modelling in an estimation of distribution algorithm.

    Get PDF
    A well-known paradigm for optimisation is the evolutionary algorithm (EA). An EA maintains a population of possible solutions to a problem which converges on a global optimum using biologically-inspired selection and reproduction operators. These algorithms have been shown to perform well on a variety of hard optimisation and search problems. A recent development in evolutionary computation is the Estimation of Distribution Algorithm (EDA) which replaces the traditional genetic reproduction operators (crossover and mutation) with the construction and sampling of a probabilistic model. While this can often represent a significant computational expense, the benefit is that the model contains explicit information about the fitness function. This thesis expands on recent work using a Markov network to model fitness in an EDA, resulting in what we call the Markov Fitness Model (MFM). The work has explored the theoretical foundations of the MFM approach which are grounded in Walsh analysis of fitness functions. This has allowed us to demonstrate a clear relationship between the fitness model and the underlying dynamics of the problem. A key achievement is that we have been able to show how the model can be used to predict fitness and have devised a measure of fitness modelling capability called the fitness prediction correlation (FPC). We have performed a series of experiments which use the FPC to investigate the effect of population size and selection operator on the fitness modelling capability. The results and analysis of these experiments are an important addition to other work on diversity and fitness distribution within populations. With this improved understanding of fitness modelling we have been able to extend the framework Distribution Estimation Using Markov networks (DEUM) to use a multivariate probabilistic model. We have proposed and demonstrated the performance of a number of algorithms based on this framework which lever the MFM for optimisation, which can now be added to the EA toolbox. As part of this we have investigated existing techniques for learning the structure of the MFM; a further contribution which results from this is the introduction of precision and recall as measures of structure quality. We have also proposed a number of possible directions that future work could take

    Methods for integrating machine learning and constrained optimization

    Get PDF
    In the framework of industrial problems, the application of Constrained Optimization is known to have overall very good modeling capability and performance and stands as one of the most powerful, explored, and exploited tool to address prescriptive tasks. The number of applications is huge, ranging from logistics to transportation, packing, production, telecommunication, scheduling, and much more. The main reason behind this success is to be found in the remarkable effort put in the last decades by the OR community to develop realistic models and devise exact or approximate methods to solve the largest variety of constrained or combinatorial optimization problems, together with the spread of computational power and easily accessible OR software and resources. On the other hand, the technological advancements lead to a data wealth never seen before and increasingly push towards methods able to extract useful knowledge from them; among the data-driven methods, Machine Learning techniques appear to be one of the most promising, thanks to its successes in domains like Image Recognition, Natural Language Processes and playing games, but also the amount of research involved. The purpose of the present research is to study how Machine Learning and Constrained Optimization can be used together to achieve systems able to leverage the strengths of both methods: this would open the way to exploiting decades of research on resolution techniques for COPs and constructing models able to adapt and learn from available data. In the first part of this work, we survey the existing techniques and classify them according to the type, method, or scope of the integration; subsequently, we introduce a novel and general algorithm devised to inject knowledge into learning models through constraints, Moving Target. In the last part of the thesis, two applications stemming from real-world projects and done in collaboration with Optit will be presented

    Evolving machine learning and deep learning models using evolutionary algorithms

    Get PDF
    Despite the great success in data mining, machine learning and deep learning models are yet subject to material obstacles when tackling real-life challenges, such as feature selection, initialization sensitivity, as well as hyperparameter optimization. The prevalence of these obstacles has severely constrained conventional machine learning and deep learning methods from fulfilling their potentials. In this research, three evolving machine learning and one evolving deep learning models are proposed to eliminate above bottlenecks, i.e. improving model initialization, enhancing feature representation, as well as optimizing model configuration, respectively, through hybridization between the advanced evolutionary algorithms and the conventional ML and DL methods. Specifically, two Firefly Algorithm based evolutionary clustering models are proposed to optimize cluster centroids in K-means and overcome initialization sensitivity as well as local stagnation. Secondly, a Particle Swarm Optimization based evolving feature selection model is developed for automatic identification of the most effective feature subset and reduction of feature dimensionality for tackling classification problems. Lastly, a Grey Wolf Optimizer based evolving Convolutional Neural Network-Long Short-Term Memory method is devised for automatic generation of the optimal topological and learning configurations for Convolutional Neural Network-Long Short-Term Memory networks to undertake multivariate time series prediction problems. Moreover, a variety of tailored search strategies are proposed to eliminate the intrinsic limitations embedded in the search mechanisms of the three employed evolutionary algorithms, i.e. the dictation of the global best signal in Particle Swarm Optimization, the constraint of the diagonal movement in Firefly Algorithm, as well as the acute contraction of search territory in Grey Wolf Optimizer, respectively. The remedy strategies include the diversification of guiding signals, the adaptive nonlinear search parameters, the hybrid position updating mechanisms, as well as the enhancement of population leaders. As such, the enhanced Particle Swarm Optimization, Firefly Algorithm, and Grey Wolf Optimizer variants are more likely to attain global optimality on complex search landscapes embedded in data mining problems, owing to the elevated search diversity as well as the achievement of advanced trade-offs between exploration and exploitation

    Data-driven prognostics and logistics optimisation:A deep learning journey

    Get PDF
    corecore