390 research outputs found

    Learning Coverage Functions and Private Release of Marginals

    Full text link
    We study the problem of approximating and learning coverage functions. A function c:2[n]R+c: 2^{[n]} \rightarrow \mathbf{R}^{+} is a coverage function, if there exists a universe UU with non-negative weights w(u)w(u) for each uUu \in U and subsets A1,A2,,AnA_1, A_2, \ldots, A_n of UU such that c(S)=uiSAiw(u)c(S) = \sum_{u \in \cup_{i \in S} A_i} w(u). Alternatively, coverage functions can be described as non-negative linear combinations of monotone disjunctions. They are a natural subclass of submodular functions and arise in a number of applications. We give an algorithm that for any γ,δ>0\gamma,\delta>0, given random and uniform examples of an unknown coverage function cc, finds a function hh that approximates cc within factor 1+γ1+\gamma on all but δ\delta-fraction of the points in time poly(n,1/γ,1/δ)poly(n,1/\gamma,1/\delta). This is the first fully-polynomial algorithm for learning an interesting class of functions in the demanding PMAC model of Balcan and Harvey (2011). Our algorithms are based on several new structural properties of coverage functions. Using the results in (Feldman and Kothari, 2014), we also show that coverage functions are learnable agnostically with excess 1\ell_1-error ϵ\epsilon over all product and symmetric distributions in time nlog(1/ϵ)n^{\log(1/\epsilon)}. In contrast, we show that, without assumptions on the distribution, learning coverage functions is at least as hard as learning polynomial-size disjoint DNF formulas, a class of functions for which the best known algorithm runs in time 2O~(n1/3)2^{\tilde{O}(n^{1/3})} (Klivans and Servedio, 2004). As an application of our learning results, we give simple differentially-private algorithms for releasing monotone conjunction counting queries with low average error. In particular, for any knk \leq n, we obtain private release of kk-way marginals with average error αˉ\bar{\alpha} in time nO(log(1/αˉ))n^{O(\log(1/\bar{\alpha}))}

    Learning Cooperative Games

    Full text link
    This paper explores a PAC (probably approximately correct) learning model in cooperative games. Specifically, we are given mm random samples of coalitions and their values, taken from some unknown cooperative game; can we predict the values of unseen coalitions? We study the PAC learnability of several well-known classes of cooperative games, such as network flow games, threshold task games, and induced subgraph games. We also establish a novel connection between PAC learnability and core stability: for games that are efficiently learnable, it is possible to find payoff divisions that are likely to be stable using a polynomial number of samples.Comment: accepted to IJCAI 201

    Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices

    Get PDF
    Super-resolution is a fundamental task in imaging, where the goal is to extract fine-grained structure from coarse-grained measurements. Here we are interested in a popular mathematical abstraction of this problem that has been widely studied in the statistics, signal processing and machine learning communities. We exactly resolve the threshold at which noisy super-resolution is possible. In particular, we establish a sharp phase transition for the relationship between the cutoff frequency (mm) and the separation (Δ\Delta). If m>1/Δ+1m > 1/\Delta + 1, our estimator converges to the true values at an inverse polynomial rate in terms of the magnitude of the noise. And when m<(1ϵ)/Δm < (1-\epsilon) /\Delta no estimator can distinguish between a particular pair of Δ\Delta-separated signals even if the magnitude of the noise is exponentially small. Our results involve making novel connections between {\em extremal functions} and the spectral properties of Vandermonde matrices. We establish a sharp phase transition for their condition number which in turn allows us to give the first noise tolerance bounds for the matrix pencil method. Moreover we show that our methods can be interpreted as giving preconditioners for Vandermonde matrices, and we use this observation to design faster algorithms for super-resolution. We believe that these ideas may have other applications in designing faster algorithms for other basic tasks in signal processing.Comment: 19 page

    Efficient Learning of Linear Separators under Bounded Noise

    Full text link
    We study the learnability of linear separators in d\Re^d in the presence of bounded (a.k.a Massart) noise. This is a realistic generalization of the random classification noise model, where the adversary can flip each example xx with probability η(x)η\eta(x) \leq \eta. We provide the first polynomial time algorithm that can learn linear separators to arbitrarily small excess error in this noise model under the uniform distribution over the unit ball in d\Re^d, for some constant value of η\eta. While widely studied in the statistical learning theory community in the context of getting faster convergence rates, computationally efficient algorithms in this model had remained elusive. Our work provides the first evidence that one can indeed design algorithms achieving arbitrarily small excess error in polynomial time under this realistic noise model and thus opens up a new and exciting line of research. We additionally provide lower bounds showing that popular algorithms such as hinge loss minimization and averaging cannot lead to arbitrarily small excess error under Massart noise, even under the uniform distribution. Our work instead, makes use of a margin based technique developed in the context of active learning. As a result, our algorithm is also an active learning algorithm with label complexity that is only a logarithmic the desired excess error ϵ\epsilon

    Privately Releasing Conjunctions and the Statistical Query Barrier

    Full text link
    Suppose we would like to know all answers to a set of statistical queries C on a data set up to small error, but we can only access the data itself using statistical queries. A trivial solution is to exhaustively ask all queries in C. Can we do any better? + We show that the number of statistical queries necessary and sufficient for this task is---up to polynomial factors---equal to the agnostic learning complexity of C in Kearns' statistical query (SQ) model. This gives a complete answer to the question when running time is not a concern. + We then show that the problem can be solved efficiently (allowing arbitrary error on a small fraction of queries) whenever the answers to C can be described by a submodular function. This includes many natural concept classes, such as graph cuts and Boolean disjunctions and conjunctions. While interesting from a learning theoretic point of view, our main applications are in privacy-preserving data analysis: Here, our second result leads to the first algorithm that efficiently releases differentially private answers to of all Boolean conjunctions with 1% average error. This presents significant progress on a key open problem in privacy-preserving data analysis. Our first result on the other hand gives unconditional lower bounds on any differentially private algorithm that admits a (potentially non-privacy-preserving) implementation using only statistical queries. Not only our algorithms, but also most known private algorithms can be implemented using only statistical queries, and hence are constrained by these lower bounds. Our result therefore isolates the complexity of agnostic learning in the SQ-model as a new barrier in the design of differentially private algorithms

    What Can We Learn Privately?

    Full text link
    Learning problems form an important category of computational tasks that generalizes many of the computations researchers apply to large real-life data sets. We ask: what concept classes can be learned privately, namely, by an algorithm whose output does not depend too heavily on any one input or specific training example? More precisely, we investigate learning algorithms that satisfy differential privacy, a notion that provides strong confidentiality guarantees in contexts where aggregate information is released about a database containing sensitive information about individuals. We demonstrate that, ignoring computational constraints, it is possible to privately agnostically learn any concept class using a sample size approximately logarithmic in the cardinality of the concept class. Therefore, almost anything learnable is learnable privately: specifically, if a concept class is learnable by a (non-private) algorithm with polynomial sample complexity and output size, then it can be learned privately using a polynomial number of samples. We also present a computationally efficient private PAC learner for the class of parity functions. Local (or randomized response) algorithms are a practical class of private algorithms that have received extensive investigation. We provide a precise characterization of local private learning algorithms. We show that a concept class is learnable by a local algorithm if and only if it is learnable in the statistical query (SQ) model. Finally, we present a separation between the power of interactive and noninteractive local learning algorithms.Comment: 35 pages, 2 figure
    corecore