17,724 research outputs found

    Developmental object learning through manipulation and human demonstration

    Get PDF
    International audienceWe present a cognitive developmental approach for a humanoid robot exploring its close environment in an interactive scenario, taking inspiration from the way infants learn about objects. The proposed approach allows to detect physical entities in the visual space, to create multi-view appearance models of these entities and to categorize them into robot parts, human parts and manipulated objects without supervision and without prior knowledge about their appearances. All information about the entities appearances and behaviour is incrementally acquired while the robot and its human partner interact with objects

    Mining Object Parts from CNNs via Active Question-Answering

    Full text link
    Given a convolutional neural network (CNN) that is pre-trained for object classification, this paper proposes to use active question-answering to semanticize neural patterns in conv-layers of the CNN and mine part concepts. For each part concept, we mine neural patterns in the pre-trained CNN, which are related to the target part, and use these patterns to construct an And-Or graph (AOG) to represent a four-layer semantic hierarchy of the part. As an interpretable model, the AOG associates different CNN units with different explicit object parts. We use an active human-computer communication to incrementally grow such an AOG on the pre-trained CNN as follows. We allow the computer to actively identify objects, whose neural patterns cannot be explained by the current AOG. Then, the computer asks human about the unexplained objects, and uses the answers to automatically discover certain CNN patterns corresponding to the missing knowledge. We incrementally grow the AOG to encode new knowledge discovered during the active-learning process. In experiments, our method exhibits high learning efficiency. Our method uses about 1/6-1/3 of the part annotations for training, but achieves similar or better part-localization performance than fast-RCNN methods.Comment: Published in CVPR 201

    Boosting Deep Open World Recognition by Clustering

    Get PDF
    While convolutional neural networks have brought significant advances in robot vision, their ability is often limited to closed world scenarios, where the number of semantic concepts to be recognized is determined by the available training set. Since it is practically impossible to capture all possible semantic concepts present in the real world in a single training set, we need to break the closed world assumption, equipping our robot with the capability to act in an open world. To provide such ability, a robot vision system should be able to (i) identify whether an instance does not belong to the set of known categories (i.e. open set recognition), and (ii) extend its knowledge to learn new classes over time (i.e. incremental learning). In this work, we show how we can boost the performance of deep open world recognition algorithms by means of a new loss formulation enforcing a global to local clustering of class-specific features. In particular, a first loss term, i.e. global clustering, forces the network to map samples closer to the class centroid they belong to while the second one, local clustering, shapes the representation space in such a way that samples of the same class get closer in the representation space while pushing away neighbours belonging to other classes. Moreover, we propose a strategy to learn class-specific rejection thresholds, instead of heuristically estimating a single global threshold, as in previous works. Experiments on RGB-D Object and Core50 datasets show the effectiveness of our approach.Comment: IROS/RAL 202

    Incremental Learning of Object Detectors without Catastrophic Forgetting

    Get PDF
    Despite their success for object detection, convolutional neural networks are ill-equipped for incremental learning, i.e., adapting the original model trained on a set of classes to additionally detect objects of new classes, in the absence of the initial training data. They suffer from "catastrophic forgetting" - an abrupt degradation of performance on the original set of classes, when the training objective is adapted to the new classes. We present a method to address this issue, and learn object detectors incrementally, when neither the original training data nor annotations for the original classes in the new training set are available. The core of our proposed solution is a loss function to balance the interplay between predictions on the new classes and a new distillation loss which minimizes the discrepancy between responses for old classes from the original and the updated networks. This incremental learning can be performed multiple times, for a new set of classes in each step, with a moderate drop in performance compared to the baseline network trained on the ensemble of data. We present object detection results on the PASCAL VOC 2007 and COCO datasets, along with a detailed empirical analysis of the approach.Comment: To appear in ICCV 201

    CAT: LoCalization and IdentificAtion Cascade Detection Transformer for Open-World Object Detection

    Full text link
    Open-world object detection (OWOD), as a more general and challenging goal, requires the model trained from data on known objects to detect both known and unknown objects and incrementally learn to identify these unknown objects. The existing works which employ standard detection framework and fixed pseudo-labelling mechanism (PLM) have the following problems: (i) The inclusion of detecting unknown objects substantially reduces the model's ability to detect known ones. (ii) The PLM does not adequately utilize the priori knowledge of inputs. (iii) The fixed selection manner of PLM cannot guarantee that the model is trained in the right direction. We observe that humans subconsciously prefer to focus on all foreground objects and then identify each one in detail, rather than localize and identify a single object simultaneously, for alleviating the confusion. This motivates us to propose a novel solution called CAT: LoCalization and IdentificAtion Cascade Detection Transformer which decouples the detection process via the shared decoder in the cascade decoding way. In the meanwhile, we propose the self-adaptive pseudo-labelling mechanism which combines the model-driven with input-driven PLM and self-adaptively generates robust pseudo-labels for unknown objects, significantly improving the ability of CAT to retrieve unknown objects. Comprehensive experiments on two benchmark datasets, i.e., MS-COCO and PASCAL VOC, show that our model outperforms the state-of-the-art in terms of all metrics in the task of OWOD, incremental object detection (IOD) and open-set detection.Comment: CVPR 2023 camera-ready versio
    • …
    corecore