62 research outputs found

    Evolutionary Artificial Neural Network Weight Tuning to Optimize Decision Making for an Abstract Game

    Get PDF
    Abstract strategy games present a deterministic perfect information environment with which to test the strategic capabilities of artificial intelligence systems. With no unknowns or random elements, only the competitors’ performances impact the results. This thesis takes one such game, Lines of Action, and attempts to develop a competitive heuristic. Due to the complexity of Lines of Action, artificial neural networks are utilized to model the relative values of board states. An application, pLoGANN (Parallel Lines of Action with Genetic Algorithm and Neural Networks), is developed to train the weights of this neural network by implementing a genetic algorithm over a distributed environment. While pLoGANN proved to be designed efficiently, it failed to produce a competitive Lines of Action player, shedding light on the difficulty of developing a neural network to model such a large and complex solution space

    Events

    Get PDF

    Neuroevolution in Games: State of the Art and Open Challenges

    Get PDF
    This paper surveys research on applying neuroevolution (NE) to games. In neuroevolution, artificial neural networks are trained through evolutionary algorithms, taking inspiration from the way biological brains evolved. We analyse the application of NE in games along five different axes, which are the role NE is chosen to play in a game, the different types of neural networks used, the way these networks are evolved, how the fitness is determined and what type of input the network receives. The article also highlights important open research challenges in the field.Comment: - Added more references - Corrected typos - Added an overview table (Table 1

    Artificial Neural Networks Manipulation Server: Research on the Integration of Databases and Artificial Neural Networks

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s005210200011This paper proposes a new whole and distributed integration approach between Artificial Neural Networks (ANNs) and Databases (DBs) taking into account the different stages of the former’s lifecycle (training, test and running). The integration architecture which has been developed consists of an ANN Manipulation Server (AMS) based on a client-server approach, which improves the ANNs’ manipulation and experimentation capabilities considerably, and also those of their training and test sets, together with their modular reuse among possibly remote applications. Moreover, the chances of integrating ANNs and DBs are analysed, proposing a new level of integration which improves the integration features considerably. This level has not been contemplated yet at full reach in any of the commercial or experimental tools analysed up to the present date. Finally, the application of the integration architecture which has been developed to the specific domain of Environmental Impact Assessments (EIAs) is studied. Thus, the versatility and efficacy of that architecture for developing ANNs is tested. The enormous complexity of the functioning of the patterns which rule the environment’s behaviour, and the great number of variables involved, make it the ideal domain for experimenting on the application of ANNs together with DBs

    Bayesian estimation of genomic copy number with single nucleotide polymorphism genotyping arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of copy number aberration in the human genome is an important area in cancer research. We develop a model for determining genomic copy numbers using high-density single nucleotide polymorphism genotyping microarrays. The method is based on a Bayesian spatial normal mixture model with an unknown number of components corresponding to true copy numbers. A reversible jump Markov chain Monte Carlo algorithm is used to implement the model and perform posterior inference.</p> <p>Results</p> <p>The performance of the algorithm is examined on both simulated and real cancer data, and it is compared with the popular CNAG algorithm for copy number detection.</p> <p>Conclusions</p> <p>We demonstrate that our Bayesian mixture model performs at least as well as the hidden Markov model based CNAG algorithm and in certain cases does better. One of the added advantages of our method is the flexibility of modeling normal cell contamination in tumor samples.</p

    ULTRA-FAST AND MEMORY-EFFICIENT LOOKUPS FOR CLOUD, NETWORKED SYSTEMS, AND MASSIVE DATA MANAGEMENT

    Get PDF
    Systems that process big data (e.g., high-traffic networks and large-scale storage) prefer data structures and algorithms with small memory and fast processing speed. Efficient and fast algorithms play an essential role in system design, despite the improvement of hardware. This dissertation is organized around a novel algorithm called Othello Hashing. Othello Hashing supports ultra-fast and memory-efficient key-value lookup, and it fits the requirements of the core algorithms of many large-scale systems and big data applications. Using Othello hashing, combined with domain expertise in cloud, computer networks, big data, and bioinformatics, I developed the following applications that resolve several major challenges in the area. Concise: Forwarding Information Base. A Forwarding Information Base is a data structure used by the data plane of a forwarding device to determine the proper forwarding actions for packets. The polymorphic property of Othello Hashing the separation of its query and control functionalities, which is a perfect match to the programmable networks such as Software Defined Networks. Using Othello Hashing, we built a fast and scalable FIB named \textit{Concise}. Extensive evaluation results on three different platforms show that Concise outperforms other FIB designs. SDLB: Cloud Load Balancer. In a cloud network, the layer-4 load balancer servers is a device that acts as a reverse proxy and distributes network or application traffic across a number of servers. We built a software load balancer with Othello Hashing techniques named SDLB. SDLB is able to accomplish two functionalities of the SDLB using one Othello query: to find the designated server for packets of ongoing sessions and to distribute new or session-free packets. MetaOthello: Taxonomic Classification of Metagenomic Sequences. Metagenomic read classification is a critical step in the identification and quantification of microbial species sampled by high-throughput sequencing. Due to the growing popularity of metagenomic data in both basic science and clinical applications, as well as the increasing volume of data being generated, efficient and accurate algorithms are in high demand. We built a system to support efficient classification of taxonomic sequences using its k-mer signatures. SeqOthello: RNA-seq Sequence Search Engine. Advances in the study of functional genomics produced a vast supply of RNA-seq datasets. However, how to quickly query and extract information from sequencing resources remains a challenging problem and has been the bottleneck for the broader dissemination of sequencing efforts. The challenge resides in both the sheer volume of the data and its nature of unstructured representation. Using the Othello Hashing techniques, we built the SeqOthello sequence search engine. SeqOthello is a reference-free, alignment-free, and parameter-free sequence search system that supports arbitrary sequence query against large collections of RNA-seq experiments, which enables large-scale integrative studies using sequence-level data

    Search-Based Procedural Content Generation: A Taxonomy and Survey

    Full text link

    Intelligence artificielle et optimisation avec parallélisme

    Get PDF
    This document is devoted to artificial intelligence and optimization. This part will bedevoted to having fun with high level ideas and to introduce the subject. Thereafter,Part II will be devoted to Monte-Carlo Tree Search, a recent great tool for sequentialdecision making; we will only briefly discuss other tools for sequential decision making;the complexity of sequential decision making will be reviewed. Then, part IIIwill discuss optimization, with a particular focus on robust optimization and especiallyevolutionary optimization. Part IV will present some machine learning tools, useful ineveryday life, such as supervised learning and active learning. A conclusion (part V)will come back to fun and to high level ideas.On parlera ici de Monte-Carlo Tree Search, d'UCT, d'algorithmes évolutionnaires et d'autres trucs et astuces d'IA;l'accent sera mis sur la parallélisation
    • …
    corecore