7,707 research outputs found

    Lean manual assembly 4.0: A systematic review

    Get PDF
    In a demand context of mass customization, shifting towards the mass personalization of products, assembly operations face the trade-off between highly productive automated systems and flexible manual operators. Novel digital technologies—conceptualized as Industry 4.0—suggest the possibility of simultaneously achieving superior productivity and flexibility. This article aims to address how Industry 4.0 technologies could improve the productivity, flexibility and quality of assembly operations. A systematic literature review was carried out, including 234 peer-reviewed articles from 2010–2020. As a result, the analysis was structured addressing four sets of research questions regarding (1) assembly for mass customization; (2) Industry 4.0 and performance evaluation; (3) Lean production as a starting point for smart factories, and (4) the implications of Industry 4.0 for people in assembly operations. It was found that mass customization brings great complexity that needs to be addressed at different levels from a holistic point of view; that Industry 4.0 offers powerful tools to achieve superior productivity and flexibility in assembly; that Lean is a great starting point for implementing such changes; and that people need to be considered central to Assembly 4.0. Developing methodologies for implementing Industry 4.0 to achieve specific business goals remains an open research topic

    A Strategic Roadmap for the Manufacturing Industry to Implement Industry 4.0

    Get PDF
    Industry 4.0 (also referred to as digitization of manufacturing) is characterized by cyber physical systems, automation, and data exchange. It is no longer a future trend and is being employed worldwide by manufacturing organizations, to gain benefits of improved performance, reduced inefficiencies, and lower costs, while improving flexibility. However, the implementation of Industry 4.0 enabling technologies is a difficult task and becomes even more challenging without any standardized approach. The barriers include, but are not limited to, lack of knowledge, inability to realistically quantify the return on investment, and lack of a skilled workforce. This study presents a systematic and content-centric literature review of Industry 4.0 enabling technologies, to highlight their impact on the manufacturing industry. It also provides a strategic roadmap for the implementation of Industry 4.0, based on lean six sigma approaches. The basis of the roadmap is the design for six sigma approach for the development of a new process chain, followed by a continuous improvement plan. The reason for choosing lean six sigma is to provide manufacturers with a sense of familiarity, as they have been employing these principles for removing waste and reducing variability. Major reasons for the rejection of Industry 4.0 implementation methodologies by manufactures are fear of the unknown and resistance to change, whereas the use of lean six sigma can mitigate them. The strategic roadmap presented in this paper can offer a holistic view of phases that manufacturers should undertake and the challenges they might face in their journey toward Industry 4.0 transition

    Healthcare Robotics

    Full text link
    Robots have the potential to be a game changer in healthcare: improving health and well-being, filling care gaps, supporting care givers, and aiding health care workers. However, before robots are able to be widely deployed, it is crucial that both the research and industrial communities work together to establish a strong evidence-base for healthcare robotics, and surmount likely adoption barriers. This article presents a broad contextualization of robots in healthcare by identifying key stakeholders, care settings, and tasks; reviewing recent advances in healthcare robotics; and outlining major challenges and opportunities to their adoption.Comment: 8 pages, Communications of the ACM, 201

    Industry 4.0 for SMEs

    Get PDF
    This open access book explores the concept of Industry 4.0, which presents a considerable challenge for the production and service sectors. While digitization initiatives are usually integrated into the central corporate strategy of larger companies, smaller firms often have problems putting Industry 4.0 paradigms into practice. Small and medium-sized enterprises (SMEs) possess neither the human nor financial resources to systematically investigate the potential and risks of introducing Industry 4.0. Addressing this obstacle, the international team of authors focuses on the development of smart manufacturing concepts, logistics solutions and managerial models specifically for SMEs. Aiming to provide methodological frameworks and pilot solutions for SMEs during their digital transformation, this innovative and timely book will be of great use to scholars researching technology management, digitization and small business, as well as practitioners within manufacturing companies

    A framework for smart production-logistics systems based on CPS and industrial IoT

    Get PDF
    Industrial Internet of Things (IIoT) has received increasing attention from both academia and industry. However, several challenges including excessively long waiting time and a serious waste of energy still exist in the IIoT-based integration between production and logistics in job shops. To address these challenges, a framework depicting the mechanism and methodology of smart production-logistics systems is proposed to implement intelligent modeling of key manufacturing resources and investigate self-organizing configuration mechanisms. A data-driven model based on analytical target cascading is developed to implement the self-organizing configuration. A case study based on a Chinese engine manufacturer is presented to validate the feasibility and evaluate the performance of the proposed framework and the developed method. The results show that the manufacturing time and the energy consumption are reduced and the computing time is reasonable. This paper potentially enables manufacturers to deploy IIoT-based applications and improve the efficiency of production-logistics systems

    Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus

    Get PDF
    This is an open access book. It gathers the first volume of the proceedings of the 31st edition of the International Conference on Flexible Automation and Intelligent Manufacturing, FAIM 2022, held on June 19 – 23, 2022, in Detroit, Michigan, USA. Covering four thematic areas including Manufacturing Processes, Machine Tools, Manufacturing Systems, and Enabling Technologies, it reports on advanced manufacturing processes, and innovative materials for 3D printing, applications of machine learning, artificial intelligence and mixed reality in various production sectors, as well as important issues in human-robot collaboration, including methods for improving safety. Contributions also cover strategies to improve quality control, supply chain management and training in the manufacturing industry, and methods supporting circular supply chain and sustainable manufacturing. All in all, this book provides academicians, engineers and professionals with extensive information on both scientific and industrial advances in the converging fields of manufacturing, production, and automation

    Do technologies really affect that much? exploring the potential of several industry 4.0 technologies in today’s lean manufacturing shop floors

    Get PDF
    We investigated the synergies and trade-offs between lean management practices and digital transformation promoted via Industry 4.0 (I4.0) technologies in current manufacturing shop floors. We used a fuzzy-set qualitative comparative analysis to examine possible interactions in a sample of 568 European manufacturing plants from the European Manufacturing Survey. Our results show that various causal pathways exist between lean practices and I4.0 technologies that contribute to improving industrial performance, highlighting the influence of vertical and horizontal data integration (VHDI) even ahead of other more extended applications, such as robotics. Furthermore, our results reveal that the combination of I4.0 technologies analyzed (VHDI, advanced robotics, and additive manufacturing) can lead to sufficient conditions for improving plant performance. From a management point of view, our findings underline the need to avoid myopic attitudes toward I4.0 opportunities. Lean programs should be designed with technological issues in mind, as digital features can establish powerful mechanisms that develop and reinforce the contributions of operational routines to manufacturing strengths in the face of new market requirements. In addition, managers must take into account the implications of the new situation: continuous learning and workforce training will be essential for workers to adapt to the requirements that digital transformation of shop floors has brought about.Agencia Estatal de Investigación | Ref. PID2019- 106677GB-I0

    Productivity and flexibility improvement of assembly lines for high-mix low-volume production. A white goods industry case

    Get PDF
    Las tendencias globales de la personalización e individualización en masa impulsan la producción industrial en serie corta y variada; y por tanto una gran variedad de productos en pequeñas cantidades. Por ello, la customización en masa precisa de sistemas de ensamblaje que sean a la vez altamente productivos y flexibles, a diferencia de la tradicional oposición entre ambas características. La llamada cuarta revolución industrial trae diversas tecnologías habilitadoras que podrían ser útiles para abordar este problema. Sin embargo, las metodologías para implementar el ensamblaje 4.0 todavía no han sido resueltas. De hecho, para aprovechar todas las ventajas potenciales de la Industria 4.0, es necesario contar con un nivel previo de excelencia operacional y un análisis holístico de los sistemas productivos. Esta tesis tiene como objetivo entender y definir cómo mejorar la productividad y la flexibilidad de las operaciones de montaje en serie corta y variada.Esta meta se ha dividido en tres objetivos. El primer objetivo consiste en comprender las relaciones entre la Industria 4.0 y las operaciones de ensamblaje, así como sus implicaciones para los operarios. El segundo objetivo consiste en desarrollar una metodología y las herramientas necesarias para evaluar el rendimiento de diferentes configuraciones de cadenas de ensamblaje. El último objetivo consiste en el diseño de sistemas de ensamblaje que permitan incrementar su productividad al menos un 25 %, produciendo en serie corta y variada, mediante la combinación de puestos de montaje manual y estaciones automatizadas.Para abordar la fase de comprensión y definición del problema, se llevó a cabo una revisión bibliográfica sistemática y se desarrolló un marco conceptual para el Ensamblaje 4.0. Se desarrollaron, verificaron y validaron dos herramientas de evaluación del rendimiento: un modelo matemático analítico y varios modelos de simulación por eventos discretos. Para la verificación, y como punto de partida para los análisis, se ha utilizado un caso de estudio industrial de un fabricante global de electrodomésticos. Se han empleado múltiples escenarios de simulación y técnicas de diseño de experimentos para investigar tres cuestiones clave.En primer lugar, se identificaron los factores más críticos para el rendimiento de líneas de montaje manuales multi-modelo. En segundo lugar, se analizó el rendimiento de líneas de montaje semiautomáticas paralelas con operarios móviles en comparación con líneas semiautomáticas o manuales con operarios fijos, empleando diversos escenarios de demanda en serie corta y variada. Por último, se investigó el uso de trenes milkrun para la logística interna de líneas de ensamblaje multi-modelo bajo la influencia de perturbaciones.Los resultados de las simulaciones muestran que las líneas paralelas con operarios móviles pueden superar a las de operarios fijos en cualquier escenario de demanda, alcanzando como mínimo el objetivo de mejorar la productividad en un 25% o más. También permiten reducir cómodamente el número de operarios trabajando en la línea sin afectar negativamente al equilibrado de la misma, posibilitando la producción eficiente de bajo volumen. Los resultados de las simulaciones de logística interna indican que los milkrun pueden proteger las líneas de ensamblaje de las perturbaciones originadas en procesos aguas arriba.Futuras líneas de investigación en base a los resultados obtenidos en esta tesis podrían incluir la expansión e integración de los modelos de simulación actuales para analizar las cadenas de montaje paralelas con operarios móviles incorporando logística, averías y mantenimiento, problemas de control de calidad y políticas de gestión de los retrabajos. Otra línea podría ser el uso de diferentes herramienta para el análisis del desempeño como, por ejemplo, técnicas de programación de la producción que permitan evaluar el desempeño operacional de diferentes configuraciones de cadenas de montaje con operarios móviles, tanto en términos de automatización como de organización en planta. Podrían incorporarse tecnologías de la Industria 4.0 a los modelos de simulación para evaluar su impacto operacional global ¿como cobots para ensamblaje o para la manipulación de materiales, realidad aumentada para el apoyo cognitivo a los operarios, o AGVs para la conducciónde los trenes milkrun. Por último, el trabajo presentado en esta tesis acerca las líneas de ensamblaje semiautomáticas con operarios móviles a su implementación industrial.<br /

    Industry 4.0 technologies for manufacturing sustainability: A systematic review and future research directions

    Get PDF
    Recent developments in manufacturing processes and automation have led to the new industrial revolution termed “Industry 4.0”. Industry 4.0 can be considered as a broad domain which includes: data management, manufacturing competitiveness, production processes and efficiency. The term Industry 4.0 includes a variety of key enabling technologies i.e., cyber physical systems, Internet of Things, artificial intelligence, big data analytics and digital twins which can be considered as the major contributors to automated and digital manufacturing environments. Sustainability can be considered as the core of business strategy which is highlighted in the United Nations (UN) Sustainability 2030 agenda and includes smart manufacturing, energy efficient buildings and low-impact industrialization. Industry 4.0 technologies help to achieve sustainability in business practices. However, very limited studies reported about the extensive reviews on these two research areas. This study uses a systematic literature review approach to find out the current research progress and future research potential of Industry 4.0 technologies to achieve manufacturing sustainability. The role and impact of different Industry 4.0 technologies for manufacturing sustainability is discussed in detail. The findings of this study provide new research scopes and future research directions in different research areas of Industry 4.0 which will be valuable for industry and academia in order to achieve manufacturing sustainability with Industry 4.0 technologies
    corecore