373 research outputs found

    Robust and Lightweight Mutual Authentication Scheme in Distributed Smart Environments

    Get PDF
    In the smart environments several smart devices are continuously working together to make individuals' lives more comfortable. Few of the examples are smart homes, smart buildings, smart airports, etc. These environments consist of many resource constrained heterogeneous entities which are interconnected, controlled, monitored and analyzed through the Internet. One of the most challenging tasks in a distributed smart environment is how to provide robust security to the resource constraint Internet-enabled devices. However, an authentication can play a major role ensuring that only authorized devices are being connected to the distributed smart environment applications. In this paper, we present a robust and lightweight mutual-authentication scheme (RLMA) for protecting distributed smart environments from unauthorized abuses. The proposed scheme uses implicit certificates and enables mutual authentication and key agreement between the smart devices in a smart environment. The RLMA not only resists to various attacks but it also achieves efficiency by reducing the computation and communication complexities. Moreover, both security analysis and performance evaluation prove the effectiveness of RLMA as compared to the state of the art schemes

    Reliable Bidirectional Data Transfer Approach for the Internet of Secured Medical Things Using ZigBee Wireless Network

    Full text link
    [EN] Nowadays, the Internet of Things (IoT) performs robust services for real-time applications in monitoring communication systems and generating meaningful information. The ZigBee devices offer low latency and manageable costs for wireless communication and support the process of physical data collection. Some biosensing systems comprise IoT-based ZigBee devices to monitor patient healthcare attributes and alert healthcare professionals for needed action. However, most of them still face unstable and frequent data interruption issues due to transmission service intrusions. Moreover, the medical data is publicly available using cloud services, and communicated through the smart devices to specialists for evaluation and disease diagnosis. Therefore, the applicable security analysis is another key factor for any medical system. This work proposed an approach for reliable network supervision with the internet of secured medical things using ZigBee networks for a smart healthcare system (RNM-SC). It aims to improve data systems with manageable congestion through load-balanced devices. Moreover, it also increases security performance in the presence of anomalies and offers data routing using the bidirectional heuristics technique. In addition, it deals with more realistic algorithm to associate only authorized devices and avoid the chances of compromising data. In the end, the communication between cloud and network applications is also protected from hostile actions, and only certified end-users can access the data. The proposed approach was tested and analyzed in Network Simulator (NS-3), and, compared to existing solutions, demonstrated significant and reliable performance improvements in terms of network throughput by 12%, energy consumption by 17%, packet drop ratio by 37%, end-to-end delay by 18%, routing complexity by 37%, and tampered packets by 37%.This research is supported by Artificial Intelligence & Data Analytics Lab (AIDA) CCIS Prince Sultan University, Riyadh, Saudi Arabia. Authors are thankful for the support.Rehman, A.; Haseeb, K.; Fati, SM.; Lloret, J.; Peñalver Herrero, ML. (2021). Reliable Bidirectional Data Transfer Approach for the Internet of Secured Medical Things Using ZigBee Wireless Network. Applied Sciences. 11(21):1-16. https://doi.org/10.3390/app11219947S116112

    A Review of IoT Security and Privacy Using Decentralized Blockchain Techniques

    Get PDF
    IoT security is one of the prominent issues that has gained significant attention among the researchers in recent times. The recent advancements in IoT introduces various critical security issues and increases the risk of privacy leakage of IoT data. Implementation of Blockchain can be a potential solution for the security issues in IoT. This review deeply investigates the security threats and issues in IoT which deteriorates the effectiveness of IoT systems. This paper presents a perceptible description of the security threats, Blockchain based solutions, security characteristics and challenges introduced during the integration of Blockchain with IoT. An analysis of different consensus protocols, existing security techniques and evaluation parameters are discussed in brief. In addition, the paper also outlines the open issues and highlights possible research opportunities which can be beneficial for future research

    Security and blockchain convergence with internet of multimedia things : current trends, research challenges and future directions

    Get PDF
    The Internet of Multimedia Things (IoMT) orchestration enables the integration of systems, software, cloud, and smart sensors into a single platform. The IoMT deals with scalar as well as multimedia data. In these networks, sensor-embedded devices and their data face numerous challenges when it comes to security. In this paper, a comprehensive review of the existing literature for IoMT is presented in the context of security and blockchain. The latest literature on all three aspects of security, i.e., authentication, privacy, and trust is provided to explore the challenges experienced by multimedia data. The convergence of blockchain and IoMT along with multimedia-enabled blockchain platforms are discussed for emerging applications. To highlight the significance of this survey, large-scale commercial projects focused on security and blockchain for multimedia applications are reviewed. The shortcomings of these projects are explored and suggestions for further improvement are provided. Based on the aforementioned discussion, we present our own case study for healthcare industry: a theoretical framework having security and blockchain as key enablers. The case study reflects the importance of security and blockchain in multimedia applications of healthcare sector. Finally, we discuss the convergence of emerging technologies with security, blockchain and IoMT to visualize the future of tomorrow's applications. © 2020 Elsevier Lt

    Fortifying Public Safety: A Dynamic Role-Based Access Control Paradigm for Cloud-Centric IoT

    Full text link
    The evolution of communication technologies, exemplified by the Internet of Things (IoT) and cloud computing, has significantly enhanced the speed and accessibility of Public Safety (PS) services, critical to ensuring the safety and security of our environment. However, these advancements also introduce inherent security and privacy challenges. In response, this research presents a novel and adaptable access control scheme tailored to PS services in cloud-supported IoT environments. Our proposed access control protocol leverages the strengths of Key Policy Attribute Based Encryption (KP-ABE) and Identity-Based Broadcast Encryption (IDBB), combining them to establish a robust security framework for cloud-supported IoT in the context of PS services. Through the implementation of an Elliptic Curve Diffie-Hellman (ECDH) scheme between entities, we ensure entity authentication, data confidentiality, and integrity, addressing fundamental security requirements. A noteworthy aspect of our lightweight protocol is the delegation of user private key generation within the KP-ABE scheme to an untrusted cloud entity. This strategic offloading of computational and communication overhead preserves data privacy, as the cloud is precluded from accessing sensitive information. To achieve this, we employ an IDBB scheme to generate secret private keys for system users based on their roles, requiring the logical conjunction ('AND') of user attributes to access data. This architecture effectively conceals user identities from the cloud service provider. Comprehensive analysis validates the efficacy of the proposed protocol, confirming its ability to ensure system security and availability within acceptable parameters

    Trustworthy Edge Machine Learning: A Survey

    Full text link
    The convergence of Edge Computing (EC) and Machine Learning (ML), known as Edge Machine Learning (EML), has become a highly regarded research area by utilizing distributed network resources to perform joint training and inference in a cooperative manner. However, EML faces various challenges due to resource constraints, heterogeneous network environments, and diverse service requirements of different applications, which together affect the trustworthiness of EML in the eyes of its stakeholders. This survey provides a comprehensive summary of definitions, attributes, frameworks, techniques, and solutions for trustworthy EML. Specifically, we first emphasize the importance of trustworthy EML within the context of Sixth-Generation (6G) networks. We then discuss the necessity of trustworthiness from the perspective of challenges encountered during deployment and real-world application scenarios. Subsequently, we provide a preliminary definition of trustworthy EML and explore its key attributes. Following this, we introduce fundamental frameworks and enabling technologies for trustworthy EML systems, and provide an in-depth literature review of the latest solutions to enhance trustworthiness of EML. Finally, we discuss corresponding research challenges and open issues.Comment: 27 pages, 7 figures, 10 table

    Functional encryption based approaches for practical privacy-preserving machine learning

    Get PDF
    Machine learning (ML) is increasingly being used in a wide variety of application domains. However, deploying ML solutions poses a significant challenge because of increasing privacy concerns, and requirements imposed by privacy-related regulations. To tackle serious privacy concerns in ML-based applications, significant recent research efforts have focused on developing privacy-preserving ML (PPML) approaches by integrating into ML pipeline existing anonymization mechanisms or emerging privacy protection approaches such as differential privacy, secure computation, and other architectural frameworks. While promising, existing secure computation based approaches, however, have significant computational efficiency issues and hence, are not practical. In this dissertation, we address several challenges related to PPML and propose practical secure computation based approaches to solve them. We consider both two-tier cloud-based and three-tier hybrid cloud-edge based PPML architectures and address both emerging deep learning models and federated learning approaches. The proposed approaches enable us to outsource data or update a locally trained model in a privacy-preserving manner by employing computation over encrypted datasets or local models. Our proposed secure computation solutions are based on functional encryption (FE) techniques. Evaluation of the proposed approaches shows that they are efficient and more practical than existing approaches, and provide strong privacy guarantees. We also address issues related to the trustworthiness of various entities within the proposed PPML infrastructures. This includes a third-party authority (TPA) which plays a critical role in the proposed FE-based PPML solutions, and cloud service providers. To ensure that such entities can be trusted, we propose a transparency and accountability framework using blockchain. We show that the proposed transparency framework is effective and guarantees security properties. Experimental evaluation shows that the proposed framework is efficient

    Securing the Internet of Things Communication Using Named Data Networking Approaches

    Get PDF
    The rapid advancement in sensors and their use in devices has led to the drastic increase of Internet-of-Things (IoT) device applications and usage. A fundamental requirement of an IoT-enabled ecosystem is the device’s ability to communicate with other devices, humans etc. IoT devices are usually highly resource constrained and come with varying capabilities and features. Hence, a host-based communication approach defined by the TCP/IP architecture relying on securing the communication channel between the hosts displays drawbacks especially when working in a highly chaotic environment (common with IoT applications). The discrepancies between requirements of the application and the network supporting the communication demands for a fundamental change in securing the communication in IoT applications. This research along with identifying the fundamental security problems in IoT device lifecycle in the context of secure communication also explores the use of a data-centric approach advocated by a modern architecture called Named Data Networking (NDN). The use of NDN modifies the basis of communication and security by defining data-centric security where the data chunks are secured directly and retrieved using specialized requests in a pull-based approach. This work also identifies the advantages of using semantically-rich names as the basis for IoT communication in the current client-driven environment and reinforces it with best-practices from the existing host-based approaches for such networks. We present in this thesis a number of solutions built to automate and securely onboard IoT devices; encryption, decryption and access control solutions based on semantically rich names and attribute-based schemes. We also provide the design details of solutions to sup- port trustworthy and conditionally private communication among highly resource constrained devices through specialized signing techniques and automated certificate generation and distribution with minimal use of the network resources. We also explore the design solutions for rapid trust establishment and vertically securing communication in applications including smart-grid operations and vehicular communication along with automated and lightweight certificate generation and management techniques. Through all these design details and exploration, we identify the applicability of the data-centric security techniques presented by NDN in securing IoT communication and address the shortcoming of the existing approaches in this area
    • …
    corecore