462 research outputs found

    Leakage-Abuse Attacks Against Searchable Encryption

    Get PDF
    Schemes for secure outsourcing of client data with search capability are being increasingly marketed and deployed. In the literature, schemes for accomplishing this efficiently are called Searchable Encryption (SE). They achieve high efficiency with provable security by means of a quantifiable leakage profile. However, the degree to which SE leakage can be exploited by an adversary is not well understood. To address this, we present a characterization of the leakage profiles of in-the-wild searchable encryption products and SE schemes in the literature, and present attack models based on an adversarial server’s prior knowledge. Then we empirically investigate the security of searchable encryption by providing query recovery and plaintext recovery attacks that exploit these leakage profiles. We term these \u27leakage-abuse attacks\u27 and demonstrate their effectiveness for varying leakage profiles and levels of server knowledge, for realistic scenarios. Amongst our contributions are realistic active attacks which have not been previously explored

    Leakage-Abuse Attacks Against Forward and Backward Private Searchable Symmetric Encryption

    Full text link
    Dynamic searchable symmetric encryption (DSSE) enables a server to efficiently search and update over encrypted files. To minimize the leakage during updates, a security notion named forward and backward privacy is expected for newly proposed DSSE schemes. Those schemes are generally constructed in a way to break the linkability across search and update queries to a given keyword. However, it remains underexplored whether forward and backward private DSSE is resilient against practical leakage-abuse attacks (LAAs), where an attacker attempts to recover query keywords from the leakage passively collected during queries. In this paper, we aim to be the first to answer this question firmly through two non-trivial efforts. First, we revisit the spectrum of forward and backward private DSSE schemes over the past few years, and unveil some inherent constructional limitations in most schemes. Those limitations allow attackers to exploit query equality and establish a guaranteed linkage among different (refreshed) query tokens surjective to a candidate keyword. Second, we refine volumetric leakage profiles of updates and queries by associating each with a specific operation. By further exploiting update volume and query response volume, we demonstrate that all forward and backward private DSSE schemes can leak the same volumetric information (e.g., insertion volume, deletion volume) as those without such security guarantees. To testify our findings, we realize two generic LAAs, i.e., frequency matching attack and volumetric inference attack, and we evaluate them over various experimental settings in the dynamic context. Finally, we call for new efficient schemes to protect query equality and volumetric information across search and update queries.Comment: A short version of this paper has been accepted to the 30th ACM Conference on Computer and Communications Security (CCS'23

    SoK: Cryptographically Protected Database Search

    Full text link
    Protected database search systems cryptographically isolate the roles of reading from, writing to, and administering the database. This separation limits unnecessary administrator access and protects data in the case of system breaches. Since protected search was introduced in 2000, the area has grown rapidly; systems are offered by academia, start-ups, and established companies. However, there is no best protected search system or set of techniques. Design of such systems is a balancing act between security, functionality, performance, and usability. This challenge is made more difficult by ongoing database specialization, as some users will want the functionality of SQL, NoSQL, or NewSQL databases. This database evolution will continue, and the protected search community should be able to quickly provide functionality consistent with newly invented databases. At the same time, the community must accurately and clearly characterize the tradeoffs between different approaches. To address these challenges, we provide the following contributions: 1) An identification of the important primitive operations across database paradigms. We find there are a small number of base operations that can be used and combined to support a large number of database paradigms. 2) An evaluation of the current state of protected search systems in implementing these base operations. This evaluation describes the main approaches and tradeoffs for each base operation. Furthermore, it puts protected search in the context of unprotected search, identifying key gaps in functionality. 3) An analysis of attacks against protected search for different base queries. 4) A roadmap and tools for transforming a protected search system into a protected database, including an open-source performance evaluation platform and initial user opinions of protected search.Comment: 20 pages, to appear to IEEE Security and Privac

    An In-Depth Analysis on Efficiency and Vulnerabilities on a Cloud-Based Searchable Symmetric Encryption Solution

    Get PDF
    Searchable Symmetric Encryption (SSE) has come to be as an integral cryptographic approach in a world where digital privacy is essential. The capacity to search through encrypted data whilst maintaining its integrity meets the most important demand for security and confidentiality in a society that is increasingly dependent on cloud-based services and data storage. SSE offers efficient processing of queries over encrypted datasets, allowing entities to comply with data privacy rules while preserving database usability. Our research goes into this need, concentrating on the development and thorough testing of an SSE system based on Curtmola’s architecture and employing Advanced Encryption Standard (AES) in Cypher Block Chaining (CBC) mode. A primary goal of the research is to conduct a thorough evaluation of the security and performance of the system. In order to assess search performance, a variety of database settings were extensively tested, and the system's security was tested by simulating intricate threat scenarios such as count attacks and leakage abuse. The efficiency of operation and cryptographic robustness of the SSE system are critically examined by these reviews

    GraphSE2^2: An Encrypted Graph Database for Privacy-Preserving Social Search

    Full text link
    In this paper, we propose GraphSE2^2, an encrypted graph database for online social network services to address massive data breaches. GraphSE2^2 preserves the functionality of social search, a key enabler for quality social network services, where social search queries are conducted on a large-scale social graph and meanwhile perform set and computational operations on user-generated contents. To enable efficient privacy-preserving social search, GraphSE2^2 provides an encrypted structural data model to facilitate parallel and encrypted graph data access. It is also designed to decompose complex social search queries into atomic operations and realise them via interchangeable protocols in a fast and scalable manner. We build GraphSE2^2 with various queries supported in the Facebook graph search engine and implement a full-fledged prototype. Extensive evaluations on Azure Cloud demonstrate that GraphSE2^2 is practical for querying a social graph with a million of users.Comment: This is the full version of our AsiaCCS paper "GraphSE2^2: An Encrypted Graph Database for Privacy-Preserving Social Search". It includes the security proof of the proposed scheme. If you want to cite our work, please cite the conference version of i

    HardIDX: Practical and Secure Index with SGX

    Full text link
    Software-based approaches for search over encrypted data are still either challenged by lack of proper, low-leakage encryption or slow performance. Existing hardware-based approaches do not scale well due to hardware limitations and software designs that are not specifically tailored to the hardware architecture, and are rarely well analyzed for their security (e.g., the impact of side channels). Additionally, existing hardware-based solutions often have a large code footprint in the trusted environment susceptible to software compromises. In this paper we present HardIDX: a hardware-based approach, leveraging Intel's SGX, for search over encrypted data. It implements only the security critical core, i.e., the search functionality, in the trusted environment and resorts to untrusted software for the remainder. HardIDX is deployable as a highly performant encrypted database index: it is logarithmic in the size of the index and searches are performed within a few milliseconds rather than seconds. We formally model and prove the security of our scheme showing that its leakage is equivalent to the best known searchable encryption schemes. Our implementation has a very small code and memory footprint yet still scales to virtually unlimited search index sizes, i.e., size is limited only by the general - non-secure - hardware resources
    • …
    corecore