13,818 research outputs found

    Dynamic and Leakage Power-Composition Profile Driven Co-Synthesis for Energy and Cost Reduction

    No full text
    Recent research has shown that combining dynamic voltage scaling (DVS) and adaptive body bias (ABB) techniques achieve the highest reduction in embedded systems energy dissipation [1]. In this paper we show that it is possible to produce comparable energy saving to that obtained using combined DVS and ABB techniques but with reduced hardware cost achieved by employing processing elements (PEs) with separate DVS or ABB capability. A co-synthesis methodology which is aware of tasks’ power-composition profile (the ratio of the dynamic power to the leakage power) is presented. The methodology selects voltage scaling capabilities (DVS, ABB, or combined DVS and ABB) for the PEs, maps, schedules, and voltage scales applications given as task graphs with timing constraints, aiming to dynamic and leakage energy reduction at low hardware cost. We conduct detailed experiments, including a real-life example, to demonstrate the effectiveness of our methodology. We demonstrate that it is possible to produce designs that contain PEs with only DVS or ABB technique but have energy dissipation that are only 4.4% higher when compared with the same designs that employ PEs with combined DVS and ABB capabilities

    Transistor-Level Synthesis of Pipeline Analog-to-Digital Converters Using a Design-Space Reduction Algorithm

    Get PDF
    A novel transistor-level synthesis procedure for pipeline ADCs is presented. This procedure is able to directly map high-level converter specifications onto transistor sizes and biasing conditions. It is based on the combination of behavioral models for performance evaluation, optimization routines to minimize the power and area consumption of the circuit solution, and an algorithm to efficiently constraint the converter design space. This algorithm precludes the cost of lengthy bottom-up verifications and speeds up the synthesis task. The approach is herein demonstrated via the design of a 0.13 ÎŒm CMOS 10 bits@60 MS/s pipeline ADC with energy consumption per conversion of only 0.54 pJ@1 MHz, making it one of the most energy-efficient 10-bit video-rate pipeline ADCs reported to date. The computational cost of this design is of only 25 min of CPU time, and includes the evaluation of 13 different pipeline architectures potentially feasible for the targeted specifications. The optimum design derived from the synthesis procedure has been fine tuned to support PVT variations, laid out together with other auxiliary blocks, and fabricated. The experimental results show a power consumption of 23 [email protected] V and an effective resolution of 9.47-bit@1 MHz. Bearing in mind that no specific power reduction strategy has been applied; the mentioned results confirm the reliability of the proposed approach.Ministerio de Ciencia e InnovaciĂłn TEC2009-08447Junta de AndalucĂ­a TIC-0281

    Technological change in economic models of environmental policy: a survey

    Get PDF
    This paper provides an overview of the treatment of technological change in economic models of environmental policy. Numerous economic modeling studies have confirmed the sensitivity of mid- and long-run climate change mitigation cost and benefit projections to assumptions about technology costs. In general, technical progress is considered to be a noneconomic, exogenous variable in global climate change modeling. However, there is overwhelming evidence that technological change is not an exogenous variable but to an important degree endogenous, induced by needs and pressures. Hence, some environmenteconomy models treat technological change as endogenous, responding to socio-economic variables. Three main elements in models of technological innovation are: (i) corporate investment in research and development, (ii) spillovers from R&D, and (iii) technology learning, especially learning-by-doing. The incorporation of induced technological change in different types of environmental-economic models tends to reduce the costs of environmental policy, accelerates abatement and may lead to positive spillover and negative leakage. --exogenous technological change,induced technological change,environmenteconomy models

    Energy-efficient hardware design based on high-level synthesis

    Get PDF
    This dissertation describes research activities broadly concerning the area of High-level synthesis (HLS), but more specifically, regarding the HLS-based design of energy-efficient hardware (HW) accelerators. HW accelerators, mostly implemented on FPGAs, are integral to the heterogeneous architectures employed in modern high performance computing (HPC) systems due to their ability to speed up the execution while dramatically reducing the energy consumption of computationally challenging portions of complex applications. Hence, the first activity was regarding an HLS-based approach to directly execute an OpenCL code on an FPGA instead of its traditional GPU-based counterpart. Modern FPGAs offer considerable computational capabilities while consuming significantly smaller power as compared to high-end GPUs. Several different implementations of the K-Nearest Neighbor algorithm were considered on both FPGA- and GPU-based platforms and their performance was compared. FPGAs were generally more energy-efficient than the GPUs in all the test cases. Eventually, we were also able to get a faster (in terms of execution time) FPGA implementation by using an FPGA-specific OpenCL coding style and utilizing suitable HLS directives. The second activity was targeted towards the development of a methodology complementing HLS to automatically derive power optimization directives (also known as "power intent") from a system-level design description and use it to drive the design steps after HLS, by producing a directive file written using the common power format (CPF) to achieve power shut-off (PSO) in case of an ASIC design. The proposed LP-HLS methodology reduces the design effort by enabling designers to infer low power information from the system-level description of a design rather than at the RTL. This methodology required a SystemC description of a generic power management module to describe the design context of a HW module also modeled in SystemC, along with the development of a tool to automatically produce the CPF file to accomplish PSO. Several test cases were considered to validate the proposed methodology and the results demonstrated its ability to correctly extract the low power information and apply it to achieve power optimization in the backend flow

    Efficacy of Multi-Threshold NULL Convention Logic in Low-Power Applications

    Get PDF
    In order for an asynchronous design paradigm such as Multi-Threshold NULL Convention Logic (MTNCL) to be adopted by industry, it is important for circuit designers to be aware of its advantages and drawbacks especially with respect to power usage. The power tradeoff between MTNCL and synchronous designs depends on many different factors including design type, circuit size, process node, and pipeline granularity. Each of these design dimensions influences the active power and the leakage power comparisons. This dissertation analyzes the effects of different design dimensions on power consumption and the associated rational for these effects. Results show that while MTNCL typically uses more active power and less leakage power than an equivalent synchronous design, the magnitude of this difference can vary greatly and trends can be observed across each of these different design dimensions. Using the results and analysis found in this work, circuit designers will be able to choose between MTNCL and synchronous architectures for a given target application based on anticipated power consumption differences

    Scheduling and partitioning Vlsi circuit operating at multiple supply voltages

    Full text link
    With today\u27s increasingly large and complex digital integrated circuit (IC) and system-on-chip designs, power dissipation has emerged as a primary design consideration. Reduction of power consumption in VLSI designs can be achieved at various levels of the design hierarchy, ranging from processing technology, circuit, logic, architectural and algorithmic (behavioral) levels, up to system level. It has also been long recognized that the most dramatic power saving is achievable at the algorithm and architecture levels, where computations are normally described using data/control flow graph. Thus, in this thesis, a multiple supply voltage IC is synthesized at the behavior level; There are, however, a number of practical problems that must be overcome before use of multiple supply voltage becomes prevalent. In particular, lower power is achieved along with an expensive routing cost. Therefore, unlike the existing methods where only scheduling is considered, our synthesis scheme considers both scheduling and partitioning to reduce power consumption due to the functional units as well as the routing cost; The concerned problem is subsequently referred as the multiple voltage scheduling and partitioning problem (MVSP). The MVSP problem is proved to be NP-complete and three behavioral level synthesis algorithms are proposed to minimize power consumption with resources operating at multiple voltages. One is the polynomial time algorithm. The others are heuristic algorithms, which are tabu search algorithm (TS), and simulated annealing algorithm (SA); In the polynomial time algorithm, synthesis is based on the following three-step process. First, one particular supply voltage (selected from a finite and known number of supply voltage levels) is to be determined for each operation in a data flow graph. Then various operations are scheduled so that the power consumption under given time and/or resource constraints can be minimized. Finally, operations are partitioned into different regions running in different supply voltages to minimize the interconnection costs; In TS and SA algorithms, synthesis schemes are performed to minimize the power consumed by resources and interconnections. In particular, we have configured our solutions with a three-tuple vector to account for both the resource assignment and the partition of operation nodes. Special move operation is designed that allows the scheduling and the partitioning to be performed simultaneously; Experiments with a number of digital signal processing benchmarks show that the proposed algorithms achieve the power reduction at different percentage
    • 

    corecore