10 research outputs found

    Ultra Low Power Digital Circuit Design for Wireless Sensor Network Applications

    Get PDF
    Ny forskning innenfor feltet trĂ„dlĂžse sensornettverk Ă„pner for nye og innovative produkter og lĂžsninger. Biomedisinske anvendelser er blant omrĂ„dene med stĂžrst potensial og det investeres i dag betydelige belĂžp for Ă„ bruke denne teknologien for Ă„ gjĂžre medisinsk diagnostikk mer effektiv samtidig som man Ă„pner for fjerndiagnostikk basert pĂ„ trĂ„dlĂžse sensornoder integrert i et ”helsenett”. MĂ„let er Ă„ forbedre tjenestekvalitet og redusere kostnader samtidig som brukerne skal oppleve forbedret livskvalitet som fĂžlge av Ăžkt trygghet og mulighet for Ă„ tilbringe mest mulig tid i eget hjem og unngĂ„ unĂždvendige sykehusbesĂžk og innleggelser. For Ă„ gjĂžre dette til en realitet er man avhengige av sensorelektronikk som bruker minst mulig energi slik at man oppnĂ„r tilstrekkelig batterilevetid selv med veldig smĂ„ batterier. I sin avhandling ” Ultra Low power Digital Circuit Design for Wireless Sensor Network Applications” har PhD-kandidat Farshad Moradi fokusert pĂ„ nye lĂžsninger innenfor konstruksjon av energigjerrig digital kretselektronikk. Avhandlingen presenterer nye lĂžsninger bĂ„de innenfor aritmetiske og kombinatoriske kretser, samtidig som den studerer nye statiske minneelementer (SRAM) og alternative minnearkitekturer. Den ser ogsĂ„ pĂ„ utfordringene som oppstĂ„r nĂ„r silisiumteknologien nedskaleres i takt med mikroprosessorutviklingen og foreslĂ„r lĂžsninger som bidrar til Ă„ gjĂžre kretslĂžsninger mer robuste og skalerbare i forhold til denne utviklingen. De viktigste konklusjonene av arbeidet er at man ved Ă„ introdusere nye konstruksjonsteknikker bĂ„de er i stand til Ă„ redusere energiforbruket samtidig som robusthet og teknologiskalerbarhet Ăžker. Forskningen har vĂŠrt utfĂžrt i samarbeid med Purdue University og vĂŠrt finansiert av Norges ForskningsrĂ„d gjennom FRINATprosjektet ”Micropower Sensor Interface in Nanometer CMOS Technology”

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing

    Improving Phase Change Memory (PCM) and Spin-Torque-Transfer Magnetic-RAM (STT-MRAM) as Next-Generation Memories: A Circuit Perspective

    Get PDF
    In the memory hierarchy of computer systems, the traditional semiconductor memories Static RAM (SRAM) and Dynamic RAM (DRAM) have already served for several decades as cache and main memory. With technology scaling, they face increasingly intractable challenges like power, density, reliability and scalability. As a result, they become less appealing in the multi/many-core era with ever increasing size and memory-intensity of working sets. Recently, there is an increasing interest in using emerging non-volatile memory technologies in replacement of SRAM and DRAM, due to their advantages like non-volatility, high device density, near-zero cell leakage and resilience to soft errors. Among several new memory technologies, Phase Change Memory (PCM) and Spin-Torque-Transfer Magnetic-RAM (STT-MRAM) are most promising candidates in building main memory and cache, respectively. However, both of them possess unique limitations that preventing them from being effectively adopted. In this dissertation, I present my circuit design work on tackling the limitations of PCM and STT-MRAM. At bit level, both PCM and STT-MRAM suffer from excessive write energy, and PCM has very limited write endurance. For PCM, I implement Differential Write to remove large number of unnecessary bit-writes that do not alter the stored data. It is then extended to STT-MRAM as Early Write Termination, with specific optimizations to eliminate the overhead of pre-write read. At array level, PCM enjoys high density but could not provide competitive throughput due to its long write latency and limited number of read/write circuits. I propose a Pseudo-Multi-Port Bank design to exploit intra-bank parallelism by recycling and reusing shared peripheral circuits between accesses in a time-multiplexed manner. On the other hand, although STT-MRAM features satisfactory throughput, its conventional array architecture is constrained on density and scalability by the pitch of the per-column bitline pair. I propose a Common-Source-Line Array architecture which uses a shared source-line along the row, essentially leaving only one bitline per column. For these techniques, I provide circuit level analyses as well as architecture/system level and/or process/device level discussions. In addition, relevant background and work are thoroughly surveyed and potential future research topics are discussed, offering insights and prospects of these next-generation memories

    Addressing the RRAM Reliability and Radiation Soft-Errors in the Memory Systems

    Get PDF
    With the continuous and aggressive technology scaling, the design of memory systems becomes very challenging. The desire to have high-capacity, reliable, and energy efficient memory arrays is rising rapidly. However, from the technology side, the increasing leakage power and the restrictions resulting from the manufacturing limitations complicate the design of memory systems. In addition to this, with the new machine learning applications, which require tremendous amount of mathematical operations to be completed in a timely manner, the interest in neuromorphic systems has increased in recent years. Emerging Non- Volatile Memory (NVM) devices have been suggested to be incorporated in the design of memory arrays due to their small size and their ability to reduce leakage power since they can retain their data even in the absence of power supply. Compared to other novel NVM devices, the Resistive Random Access Memory (RRAM) device has many advantages including its low-programming requirements, the large ratio between its high and low resistive states, and its compatibility with the Complementary Metal Oxide Semiconductor (CMOS) fabrication process. RRAM device suffers from other disadvantages including the instability in its switching dynamics and its sensitivity to process variations. Yet, one of the popular issues hindering the deployment of RRAM arrays in products are the RRAM reliability and radiation soft-errors. The RRAM reliability soft-errors result from the diffusion of oxygen vacations out of the conductive channels within the oxide material of the device. On the other hand, the radiation soft-errors are caused by the highly energetic cosmic rays incident on the junction of the MOS device used as a selector for the RRAM cell. Both of those soft-errors cause the unintentional change of the resistive state of the RRAM device. While there is research work in literature to address some of the RRAM disadvantages such as the switching dynamic instability, there is no dedicated work discussing the impact of RRAM soft-errors on the various designs to which the RRAM device is integrated and how the soft-errors can be automatically detected and fixed. In this thesis, we bring the attention to the need of considering the RRAM soft-errors to avoid the degradation in design performance. In addition to this, using previously reported SPICE models, which were experimentally verified, and widely adapted system level simulators and test benches, various solutions are provided to automatically detect and fix the degradation in design performance due to the RRAM soft-errors. The main focus in this work is to propose methodologies which solve or improve the robustness of memory systems to the RRAM soft-errors. These memories are expected to be incorporated in the current and futuristic platforms running the advanced machine learning applications. In more details, the main contributions of this thesis can be summarized as: - Provide in depth analysis of the impact of RRAM soft-errors on the performance of RRAM-based designs. - Provide a new SRAM cell which uses the RRAM device to reduce the SRAM leakage power with minimal impact on its read and write operations. This new SRAM cell can be incorporated in the Graphical Processing Unit (GPU) design used currently in the implementation of the machine learning platforms. - Provide a circuit and system solutions to resolve the reliability and radiation soft-errors in the RRAM arrays. These solution can automatically detect and fix the soft-errors with minimum impact on the delay and energy consumption of the memory array. - A framework is developed to estimate the effect of RRAM soft-errors on the performance of RRAM-based neuromorphic systems. This actually provides, for the first time, a very generic methodology through which the device level RRAM soft-errors are mapped to the overall performance of the neuromorphic systems. Our analysis show that the accuracy of the RRAM-based neuromorphic system can degrade by more than 48% due to RRAM soft-errors. - Two algorithms are provided to automatically detect and restore the degradation in RRAM-based neuromorphic systems due to RRAM soft-errors. The system and circuit level techniques to implement these algorithms are also explained in this work. In conclusion, this work offers initial steps for enabling the usage of RRAM devices in products by tackling one of its most known challenges: RRAM reliability and radiation soft-errors. Despite using experimentally verified SPICE models and widely popular system simulators and test benches, the provided solutions in this thesis need to be verified in the future work through fabrication to study the impact of other RRAM technology shortcomings including: a) the instability in its switching dynamics due to the stochastic nature of oxygen vacancies movement, and b) its sensitivity to process variations

    Leveraging the Intrinsic Switching Behaviors of Spintronic Devices for Digital and Neuromorphic Circuits

    Get PDF
    With semiconductor technology scaling approaching atomic limits, novel approaches utilizing new memory and computation elements are sought in order to realize increased density, enhanced functionality, and new computational paradigms. Spintronic devices offer intriguing avenues to improve digital circuits by leveraging non-volatility to reduce static power dissipation and vertical integration for increased density. Novel hybrid spintronic-CMOS digital circuits are developed herein that illustrate enhanced functionality at reduced static power consumption and area cost. The developed spin-CMOS D Flip-Flop offers improved power-gating strategies by achieving instant store/restore capabilities while using 10 fewer transistors than typical CMOS-only implementations. The spin-CMOS Muller C-Element developed herein improves asynchronous pipelines by reducing the area overhead while adding enhanced functionality such as instant data store/restore and delay-element-free bundled data asynchronous pipelines. Spintronic devices also provide improved scaling for neuromorphic circuits by enabling compact and low power neuron and non-volatile synapse implementations while enabling new neuromorphic paradigms leveraging the stochastic behavior of spintronic devices to realize stochastic spiking neurons, which are more akin to biological neurons and commensurate with theories from computational neuroscience and probabilistic learning rules. Spintronic-based Probabilistic Activation Function circuits are utilized herein to provide a compact and low-power neuron for Binarized Neural Networks. Two implementations of stochastic spiking neurons with alternative speed, power, and area benefits are realized. Finally, a comprehensive neuromorphic architecture comprising stochastic spiking neurons, low-precision synapses with Probabilistic Hebbian Plasticity, and a novel non-volatile homeostasis mechanism is realized for subthreshold ultra-low-power unsupervised learning with robustness to process variations. Along with several case studies, implications for future spintronic digital and neuromorphic circuits are presented

    Ultra-low noise, high-frame rate readout design for a 3D-stacked CMOS image sensor

    Get PDF
    Due to the switch from CCD to CMOS technology, CMOS based image sensors have become smaller, cheaper, faster, and have recently outclassed CCDs in terms of image quality. Apart from the extensive set of applications requiring image sensors, the next technological breakthrough in imaging would be to consolidate and completely shift the conventional CMOS image sensor technology to the 3D-stacked technology. Stacking is recent and an innovative technology in the imaging field, allowing multiple silicon tiers with different functions to be stacked on top of each other. The technology allows for an extreme parallelism of the pixel readout circuitry. Furthermore, the readout is placed underneath the pixel array on a 3D-stacked image sensor, and the parallelism of the readout can remain constant at any spatial resolution of the sensors, allowing extreme low noise and a high-frame rate (design) at virtually any sensor array resolution. The objective of this work is the design of ultra-low noise readout circuits meant for 3D-stacked image sensors, structured with parallel readout circuitries. The readout circuit’s key requirements are low noise, speed, low-area (for higher parallelism), and low power. A CMOS imaging review is presented through a short historical background, followed by the description of the motivation, the research goals, and the work contributions. The fundamentals of CMOS image sensors are addressed, as a part of highlighting the typical image sensor features, the essential building blocks, types of operation, as well as their physical characteristics and their evaluation metrics. Following up on this, the document pays attention to the readout circuit’s noise theory and the column converters theory, to identify possible pitfalls to obtain sub-electron noise imagers. Lastly, the fabricated test CIS device performances are reported along with conjectures and conclusions, ending this thesis with the 3D-stacked subject issues and the future work. A part of the developed research work is located in the Appendices.Devido Ă  mudança da tecnologia CCD para CMOS, os sensores de imagem em CMOS tornam se mais pequenos, mais baratos, mais rĂĄpidos, e mais recentemente, ultrapassaram os sensores CCD no que respeita Ă  qualidade de imagem. Para alĂ©m do vasto conjunto de aplicaçÔes que requerem sensores de imagem, o prĂłximo salto tecnolĂłgico no ramo dos sensores de imagem Ă© o de mudar completamente da tecnologia de sensores de imagem CMOS convencional para a tecnologia “3D-stacked”. O empilhamento de chips Ă© relativamente recente e Ă© uma tecnologia inovadora no campo dos sensores de imagem, permitindo vĂĄrios planos de silĂ­cio com diferentes funçÔes poderem ser empilhados uns sobre os outros. Esta tecnologia permite portanto, um paralelismo extremo na leitura dos sinais vindos da matriz de pĂ­xeis. AlĂ©m disso, num sensor de imagem de planos de silĂ­cio empilhados, os circuitos de leitura estĂŁo posicionados debaixo da matriz de pĂ­xeis, sendo que dessa forma, o paralelismo pode manter-se constante para qualquer resolução espacial, permitindo assim atingir um extremo baixo ruĂ­do e um alto debito de imagens, virtualmente para qualquer resolução desejada. O objetivo deste trabalho Ă© o de desenhar circuitos de leitura de coluna de muito baixo ruĂ­do, planeados para serem empregues em sensores de imagem “3D-stacked” com estruturas altamente paralelizadas. Os requisitos chave para os circuitos de leitura sĂŁo de baixo ruĂ­do, rapidez e pouca ĂĄrea utilizada, de forma a obter-se o melhor rĂĄcio. Uma breve revisĂŁo histĂłrica dos sensores de imagem CMOS Ă© apresentada, seguida da motivação, dos objetivos e das contribuiçÔes feitas. Os fundamentos dos sensores de imagem CMOS sĂŁo tambĂ©m abordados para expor as suas caracterĂ­sticas, os blocos essenciais, os tipos de operação, assim como as suas caracterĂ­sticas fĂ­sicas e suas mĂ©tricas de avaliação. No seguimento disto, especial atenção Ă© dada Ă  teoria subjacente ao ruĂ­do inerente dos circuitos de leitura e dos conversores de coluna, servindo para identificar os possĂ­veis aspetos que dificultem atingir a tĂŁo desejada performance de muito baixo ruĂ­do. Por fim, os resultados experimentais do sensor desenvolvido sĂŁo apresentados junto com possĂ­veis conjeturas e respetivas conclusĂ”es, terminando o documento com o assunto de empilhamento vertical de camadas de silĂ­cio, junto com o possĂ­vel trabalho futuro
    corecore