19 research outputs found

    Multi-channel ultra-low-power receiver architecture for body area networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 85-91).In recently published integrated medical monitoring systems, a common thread is the high power consumption of the radio compared to the other system components. This observation is indicative of a natural place to attempt a reduction in system power. Narrowband receivers in-particular can enjoy significant power reduction by employing high-Q bulk acoustic resonators as channel select filters directly at RF, allowing down-stream analog processing to be simplified, resulting in better energy efficiency. But for communications in the ISM bands, it is important to employ multiple frequency channels to permit frequency-division-multiplexing and provide frequency diversity in the face of narrowband interferers. The high-Q nature of the resonators means that frequency tuning to other channels in the same band is nearly impossible; hence, a new architecture is required to address this challenge. A multi-channel ultra-low power OOK receiver for Body Area Networks (BANs) has been designed and tested. The receiver multiplexes three Film Bulk Acoustic Resonators (FBARs) to provide three channels of frequency discrimination, while at the same time offering competitive sensitivity and superior energy efficiency in this class of BAN receivers. The high-Q parallel resonance of each resonator determines the passband. The resonator's Q is on the order of 1000 and its center frequency is approximately 2.5 GHz, resulting in a -3 dB bandwidth of roughly 2.5 MHz with a very steep rolloff. Channels are selected by enabling the corresponding LNA and mixer pathway with switches, but a key benefit of this architecture is that the switches are not in series with the resonator and do not de-Q the resonance. The measured 1E-3 sensitivity is -64 dBm at 1 Mbps for an energy efficiency of 180 pJ/bit. The resonators are packaged beside the CMOS using wirebonds for the prototype.by Phillip Michel Nadeau.S.M

    Ultra Low Power IEEE 802.15.4/ZIGBEE Compliant Transceiver

    Get PDF
    Low power wireless communications is the most demanding request among all wireless users. A battery life that can survive for years without being replaced, makes it realistic to implement many applications where the battery is unreachable (e.g. concrete walls) or expensive to change (e.g underground applications). IEEE 802.15.4/ZIGBEE standard is published to cover low power low cost applications, where the battery life can last for years, because of the 1% duty cycle of operation. A fully integrated 2.4GHz IEEE802.15.4 Compliant transceiver suitable for low power, low cost ZIGBEE applications is implemented. Direct conversion architecture is used in both Receiver and Transmitter, to achieve the minimum possible power and area. The chip is fabricated in a standard 0.18um CMOS technology. In the transmit mode, the transmitter chain (Modulator to PA) consumes 25mW, while in the receive mode, the iv receiver chain (LNA to Demodulator) consumes 5mW. The Integer-N Frequency Synthesizer consumes 8.5mW. Other Low power circuits are reported; A 13.56 Passive RFID tag and a low power ADC suitable for Built-In-Testing applications

    Integrated Circuits/Microchips

    Get PDF
    With the world marching inexorably towards the fourth industrial revolution (IR 4.0), one is now embracing lives with artificial intelligence (AI), the Internet of Things (IoTs), virtual reality (VR) and 5G technology. Wherever we are, whatever we are doing, there are electronic devices that we rely indispensably on. While some of these technologies, such as those fueled with smart, autonomous systems, are seemingly precocious; others have existed for quite a while. These devices range from simple home appliances, entertainment media to complex aeronautical instruments. Clearly, the daily lives of mankind today are interwoven seamlessly with electronics. Surprising as it may seem, the cornerstone that empowers these electronic devices is nothing more than a mere diminutive semiconductor cube block. More colloquially referred to as the Very-Large-Scale-Integration (VLSI) chip or an integrated circuit (IC) chip or simply a microchip, this semiconductor cube block, approximately the size of a grain of rice, is composed of millions to billions of transistors. The transistors are interconnected in such a way that allows electrical circuitries for certain applications to be realized. Some of these chips serve specific permanent applications and are known as Application Specific Integrated Circuits (ASICS); while, others are computing processors which could be programmed for diverse applications. The computer processor, together with its supporting hardware and user interfaces, is known as an embedded system.In this book, a variety of topics related to microchips are extensively illustrated. The topics encompass the physics of the microchip device, as well as its design methods and applications

    An Analog VLSI Deep Machine Learning Implementation

    Get PDF
    Machine learning systems provide automated data processing and see a wide range of applications. Direct processing of raw high-dimensional data such as images and video by machine learning systems is impractical both due to prohibitive power consumption and the “curse of dimensionality,” which makes learning tasks exponentially more difficult as dimension increases. Deep machine learning (DML) mimics the hierarchical presentation of information in the human brain to achieve robust automated feature extraction, reducing the dimension of such data. However, the computational complexity of DML systems limits large-scale implementations in standard digital computers. Custom analog signal processing (ASP) can yield much higher energy efficiency than digital signal processing (DSP), presenting means of overcoming these limitations. The purpose of this work is to develop an analog implementation of DML system. First, an analog memory is proposed as an essential component of the learning systems. It uses the charge trapped on the floating gate to store analog value in a non-volatile way. The memory is compatible with standard digital CMOS process and allows random-accessible bi-directional updates without the need for on-chip charge pump or high voltage switch. Second, architecture and circuits are developed to realize an online k-means clustering algorithm in analog signal processing. It achieves automatic recognition of underlying data pattern and online extraction of data statistical parameters. This unsupervised learning system constitutes the computation node in the deep machine learning hierarchy. Third, a 3-layer, 7-node analog deep machine learning engine is designed featuring online unsupervised trainability and non-volatile floating-gate analog storage. It utilizes massively parallel reconfigurable current-mode analog architecture to realize efficient computation. And algorithm-level feedback is leveraged to provide robustness to circuit imperfections in analog signal processing. At a processing speed of 8300 input vectors per second, it achieves 1×1012 operation per second per Watt of peak energy efficiency. In addition, an ultra-low-power tunable bump circuit is presented to provide similarity measures in analog signal processing. It incorporates a novel wide-input-range tunable pseudo-differential transconductor. The circuit demonstrates tunability of bump center, width and height with a power consumption significantly lower than previous works

    Ultra Small Antenna and Low Power Receiver for Smart Dust Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks have the potential for profound impact on our daily lives. Smart Dust Wireless Sensor Networks (SDWSNs) are emerging members of the Wireless Sensor Network family with strict requirements on communication node sizes (1 cubic centimeter) and power consumption (< 2mW during short on-states). In addition, the large number of communication nodes needed in SDWSN require highly integrated solutions. This dissertation develops new design techniques for low-volume antennas and low-power receivers for SDWSN applications. In addition, it devises an antenna and low noise amplifier co-design methodology to increase the level of design integration, reduce receiver noise, and reduce the development cycle. This dissertation first establishes stringent principles for designing SDWSN electrically small antennas (ESAs). Based on these principles, a new ESA, the F-Inverted Compact Antenna (FICA), is designed at 916MHz. This FICA has a significant advantage in that it uses a small-size ground plane. The volume of this FICA (including the ground plane) is only 7% of other state-of-the-art ESAs, while its efficiency (48.53%) and gain (-1.38dBi) are comparable to antennas of much larger dimensions. A physics-based circuit model is developed for this FICA to assist system level design at the earliest stage, including optimization of the antenna performance. An antenna and low noise amplifier (LNA) co-design method is proposed and proven to be valid to design low power LNAs with the very low noise figure of only 1.5dB. To reduce receiver power consumption, this dissertation proposes a novel LNA active device and an input/ouput passive matching network optimization method. With this method, a power efficient high voltage gain cascode LNA was designed in a 0.13um CMOS process with only low quality factor inductors. This LNA has a 3.6dB noise figure, voltage gain of 24dB, input third intercept point (IIP3) of 3dBm, and power consumption of 1.5mW at 1.0V supply voltage. Its figure of merit, using the typical definition, is twice that of the best in the literature. A full low power receiver is developed with a sensitivity of -58dBm, chip area of 1.1mm2, and power consumption of 2.85mW

    KALYPSO, a novel detector system for high-repetition rate and real-time beam diagnostics

    Get PDF

    Studies and development of a readout ASIC for pixelated CdTe detectors for space applications

    Get PDF
    Le travail présenté dans ce manuscrit a été effectué au sein de l équipe de microélectronique de l Institut de Recherche sur les lois Fondamentales de l Univers (IRFU) du CEA. Il s inscrit dans le contexte de la spectro-imagerie X et gamma pour la recherche en Astrophysique. Dans ce domaine, les futures expériences embarquées à bords de satellites nécessiteront des instruments d imagerie à très hautes résolutions spatiales et énergétiques.La résolution spectrale d une gamma-camera est dégradée par l imperfection du détecteur lors de l interaction photon-matière lui-même et par le bruit électronique. Si on ne peut réduire l imprécision de conversion photon-charge du détecteur, on peut minimiser le bruit apporté par l électronique de lecture. L objectif de cette thèse est la conception d une électronique intégrée de lecture de détecteur semi-conducteurs CdTe pixélisés pour gamma-caméra(s) compacte(s) et aboutable(s) sur 4 côtés à résolution spatiale Fano limitée . Les objectifs principaux de ce circuit intégré sont: un très bas bruit pour la mesure d énergie des rayons-X, une très basse consommation, et une taille de canal de détection adaptée au pas des pixels CdTe. Pour concevoir une telle électronique, chaque paramètre contribuant au bruit doit être optimisé. L hybridation entre l électronique de lecture et le détecteur est également un paramètre clef qui fait généralement la résolution finale de l instrument : en imposant une géométrie matricielle à l ASIC adaptée au pas de 300 m des pixels de CdTe, on peut espérer, réduire d un facteur 10 la capacité parasite amenée par la connexion détecteur-électronique et améliorer d autant le bruit électronique tout en conservant une densité de puissance constante. Une bonne connaissance des propriétés du détecteur nous permet alors d extraire ses paramètres électroniques clefs pour concevoir l architecture électronique de conversion et de filtrage optimale. Dans le cadre de cette thèse j ai conçu deux circuits intégrés en technologies CMOS XFAB 0.18 m. Le premier, Caterpylar, est destiné à caractériser cette nouvelle technologie, y compris en radiation, identifier un étage d entrée pour le pixel adapté au détecteur, et valider par la mesure les résultats théoriques établis sur deux architectures de filtrage, semi gaussien et Multi-Correlated Double Sampling (MCDS), approchant l efficacité du filtrage optimal et adaptées aux applications finales. Le deuxième circuit, D2R1, est un système complet, constitué de 256 canaux de lecture de détecteur CdTe, organisés dans une matrice de 16.16 pixels. Chaque canal comprend un préamplificateur de charge adapté à des pixels de 300 m.300 m, un opérateur de filtrage de type MCDS de profondeur programmable, d un discriminateur auto-déclenché à bas seuil de détection programmable par canal. L ASIC a été caractérisé sans détecteur et est en voie d être hybridé à une matrice de CdTe très prochainement. Les résultats de caractérisations de la puce nue, en particulier en terme de produit puissance . bruit, sont excellents. La consommation de la puce est de 315 W/ canal, la charge équivalente de bruit mesurée sur tous les canaux est de 29 électrons rms. Ces résultats valident le choix d intégration d un filtrage de type MCDS, qui est, à notre connaissance une première mondiale pour la lecture de détecteurs CdTe. Par ailleurs, ils nous permettent d envisager d excellentes résolutions spectrales de l ensemble détecteur+ASIC, de l ordre de 600 eV FWHM à 60 keV.The work presented in this thesis is part of a project where a new instrument is developed: a camera for hard X-rays imaging spectroscopy. It is dedicated to fundamental research for observations in astrophysics, at wavelengths which can only be observed using space-borne instruments. In this domain the spectroscopic accuracy as well as the imaging details are of high importance. This work has been realized at CEA/IRFU (Institut de Recherche sur les lois Fondamentales de l Univers), which has a long-standing and successful experience in instruments for high energy physics and space physics instrumentation. The objective of this thesis is the design of the readout electronics for a pixelated CdTe detector, suitable for a stacked assembly. The principal parameters of this integrated circuit are a very low noise for reaching a good accuracy in X-ray energy measurement, very low power consumption, a critical parameter in space-borne applications, and a small dead area for the full system combining the detector and the readout electronics. In this work I have studied the limits of these three parameters in order to optimize the circuit.In terms of the spectral resolution, two categories of noise had to be distinguished to determine the final performance. The first is the Fano noise limit. related to detector interaction statistics, which cannot be eliminated. The second is the electronic noise, also unavoidable; however it can be minimized through optimization of the detection chain. Within the detector, establishing a small pixel pitch of 300 m reduces the input capacitance and the dark current. This limits the effects of the electronic noise. Also in order to limit the input capacitance the future camera is designed as a stacked assembly of the detector with the readout ASIC. This allows to reach extremely good input parameters seen by the readout electronics: a capacitance in range of 0.3 pF - 1 pF and a dark current below 5 pA.In the frame of this thesis I have designed two ASICs. The first one, Caterpylar, is a testchip, which enables the characterization of differently dimensioned CSA circuits to choose the most suitable one for the final application. It is optimized for readout of the target CdTe detector with 300 m pixel pitch and the corresponding input parameters. With this circuit I have also analyzed possible filtering methods, in particular the semi-Gaussian shaping and the Multi-Correlated Double Sampling (MCDS). Their comparison is preceded by the theoretical analysis of these shapers. The second ASIC D2R1 is a complete readout circuit, containing 256 channels to readout CdTe detector with the same number of pixels, arranged in 16.16 array. Each channel fits into a layout area of 300 m . 300 m. It is based on the MCDS processing with self-triggering capabilities. The mean electronic noise measured over all channels is 29 electrons rms when characterized without the detector. The corresponding power consumption is 315 W channel. With these results the future measurements with the detector give prospects for reaching an FWHM spectral resolution in the order of 600 eV at 60 keV.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Topical Workshop on Electronics for Particle Physics

    Get PDF
    The purpose of the workshop was to present results and original concepts for electronics research and development relevant to particle physics experiments as well as accelerator and beam instrumentation at future facilities; to review the status of electronics for the LHC experiments; to identify and encourage common efforts for the development of electronics; and to promote information exchange and collaboration in the relevant engineering and physics communities

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Particle Physics Reference Library

    Get PDF
    This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the “Particle Physics Reference Library” provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
    corecore