21 research outputs found

    Water Pipeline Leakage Detection Based on Machine Learning and Wireless Sensor Networks

    Get PDF
    The detection of water pipeline leakage is important to ensure that water supply networks can operate safely and conserve water resources. To address the lack of intelligent and the low efficiency of conventional leakage detection methods, this paper designs a leakage detection method based on machine learning and wireless sensor networks (WSNs). The system employs wireless sensors installed on pipelines to collect data and utilizes the 4G network to perform remote data transmission. A leakage triggered networking method is proposed to reduce the wireless sensor network’s energy consumption and prolong the system life cycle effectively. To enhance the precision and intelligence of leakage detection, we propose a leakage identification method that employs the intrinsic mode function, approximate entropy, and principal component analysis to construct a signal feature set and that uses a support vector machine (SVM) as a classifier to perform leakage detection. Simulation analysis and experimental results indicate that the proposed leakage identification method can effectively identify the water pipeline leakage and has lower energy consumption than the networking methods used in conventional wireless sensor networks

    Water Pipeline Leakage Detection Based on Machine Learning and Wireless Sensor Networks

    Get PDF
    The detection of water pipeline leakage is important to ensure that water supply networks can operate safely and conserve water resources. To address the lack of intelligent and the low efficiency of conventional leakage detection methods, this paper designs a leakage detection method based on machine learning and wireless sensor networks (WSNs). The system employs wireless sensors installed on pipelines to collect data and utilizes the 4G network to perform remote data transmission. A leakage triggered networking method is proposed to reduce the wireless sensor network’s energy consumption and prolong the system life cycle effectively. To enhance the precision and intelligence of leakage detection, we propose a leakage identification method that employs the intrinsic mode function, approximate entropy, and principal component analysis to construct a signal feature set and that uses a support vector machine (SVM) as a classifier to perform leakage detection. Simulation analysis and experimental results indicate that the proposed leakage identification method can effectively identify the water pipeline leakage and has lower energy consumption than the networking methods used in conventional wireless sensor networks

    Simulation of an aircraft environmental control system

    Get PDF
    The environmental control system of a civil aircraft is a major driver of maintenance. Legacy systems, such as those on the Boeing 737, are particularly at risk, as they are not instrumented for health management. These systems degrade in operation and allow compensation within their operation for degrading components, until severe degradation or failure results. The required maintenance is then both costly and disruptive. The goal of this research is to produce a simulation environment that can model the aircraft environmental control system, in order that analysis for sensor placement and algorithms can be performed without extensive, and expensive, testing. A simulation framework called Simscape Environmental Control System Simulation under All Conditions has been proposed and implemented. It offers a library of components that can be assembled into specific aircraft environmental control system simulation configurations. It is capable of simulating the health state indicating parameters at sub-system and component levels under a wide-range of aircraft operating scenarios. The developed framework has been successfully implemented to simulate a Boeing 737-800 passenger air conditioner. Its verification and validation has been carried out against the actual data corresponding to a Boeing 737-800 passenger air conditioner operating at two different cruise operating points. An extensive comparison of the simulation is presented against the data for all the passenger air conditioner components. The overall acquired results suggest that changes in the aircraft ambient conditions can have a noticeable impact on the demanded passenger air conditioner outlet temperature, and a substantial impact on the heat transfer in the primary and secondary heat exchangers. The reported simulation capability serves as a first step towards formulating an environmental control system fault simulation and diagnostic solution

    Volume 1 – Symposium

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group A: Materials Group B: System design & integration Group C: Novel system solutions Group D: Additive manufacturing Group E: Components Group F: Intelligent control Group G: Fluids Group H | K: Pumps Group I | L: Mobile applications Group J: Fundamental

    Characterization, monitoring, and sensor technology catalogue

    Full text link

    GSI Scientific Report 2016

    Get PDF
    PLEASE GO TO FILES TO SELECT YOUR DOWNLOAD SECTION. Lience: https://creativecommons.org/licenses/by/4.0

    Handbook of Digital Face Manipulation and Detection

    Get PDF
    This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area

    Handbook of Digital Face Manipulation and Detection

    Get PDF
    This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area

    Numerical analysis of fatigue crack growth in welded joints with multiple defects

    Get PDF
    In the case of welded steel structures (such as pressure equipment), welded joints are often critical location for stress concentrations, due to different mechanical properties and chemical composition compared to the parent material, and due to changes in geometry. In addition, the presence of imperfections (defects) in welded joints can contribute to the increase in local stress, resulting in crack initiation. Recently, standards that are related to acceptable dimensions of various types of defects in welded joints started taking fatigue loading into account as well. For the purpose of this research, a 3D numerical model was made, of a welded joint with different types of defects (linear misalignment and a crack in the weld metal), based on the previous work, which involved static loading of the same specimen. In this case, fatigue was taken into account, and the simulation was performed using ABAQUS software, as well as Morfeo, an add-on used for determining the fatigue behaviour of structures via XFEM (extended finite element method). The welded joint was made using steel P460NL1 as the parent material, and EPP2NiMo2 wire was used for the weld metal. An additional model was made, whose defects included a crack and an overhang. Fatigue crack growth analysis was performed for this model as well, and the results for stress intensity factors and stress/strain distribution were compared in order to obtain information about how different defects can affect the integrity of a welded joint

    The influence of oxide deposits on the remaining life and integrity of pressure vessels equipment

    Get PDF
    In this paper is presented the principle of application of fracture mechanics parameters in determining the integrity of rotary equipment. The behavior of rotary equipment depends on presence of cracks and basically determines the integrity and life of such equipment. The locations of stress concentration (i.e. radius changes) represent a particular problem in rotary equipment, and they are the most suitable places for the occurrence of microcracks i.e. cracks due to fatigue load. This problem is most common in the shaft of relatively large dimensions, for example, turbine shafts in hydropower plants made of high-strength carbon steel with relatively low fracture toughness, and relatively low resistance to crack formation and growth. Having in mind that rotary equipment represents the great risk in the exploitation, whose occasional failures often had severe consequences, it is necessary detail study of their integrity. For this purpose, it is necessary application of parameters of linear-elastic fracture mechanics, such as stress intensity factor, which range defines the rate of crack growth (Parisian law), and its critical value (fracture toughness) determines the critical crack length. The procedures for determining the critical crack length will be described using the fracture mechanics parameters
    corecore