36,795 research outputs found

    The zz-matching problem on bipartite graphs

    Full text link
    The zz-matching problem on bipartite graphs is studied with a local algorithm. A zz-matching (z≥1z \ge 1) on a bipartite graph is a set of matched edges, in which each vertex of one type is adjacent to at most 11 matched edge and each vertex of the other type is adjacent to at most zz matched edges. The zz-matching problem on a given bipartite graph concerns finding zz-matchings with the maximum size. Our approach to this combinatorial optimization are of two folds. From an algorithmic perspective, we adopt a local algorithm as a linear approximate solver to find zz-matchings on general bipartite graphs, whose basic component is a generalized version of the greedy leaf removal procedure in graph theory. From an analytical perspective, in the case of random bipartite graphs with the same size of two types of vertices, we develop a mean-field theory for the percolation phenomenon underlying the local algorithm, leading to a theoretical estimation of zz-matching sizes on coreless graphs. We hope that our results can shed light on further study on algorithms and computational complexity of the optimization problem.Comment: 15 pages, 3 figure

    Computing Unique Maximum Matchings in O(m) time for Konig-Egervary Graphs and Unicyclic Graphs

    Full text link
    Let alpha(G) denote the maximum size of an independent set of vertices and mu(G) be the cardinality of a maximum matching in a graph G. A matching saturating all the vertices is perfect. If alpha(G) + mu(G) equals the number of vertices of G, then it is called a Konig-Egervary graph. A graph is unicyclic if it has a unique cycle. In 2010, Bartha conjectured that a unique perfect matching, if it exists, can be found in O(m) time, where m is the number of edges. In this paper we validate this conjecture for Konig-Egervary graphs and unicylic graphs. We propose a variation of Karp-Sipser leaf-removal algorithm (Karp and Spiser, 1981), which ends with an empty graph if and only if the original graph is a Konig-Egervary graph with a unique perfect matching obtained as an output as well. We also show that a unicyclic non-bipartite graph G may have at most one perfect matching, and this is the case where G is a Konig-Egervary graph.Comment: 10 pages, 5 figure
    • …
    corecore