429 research outputs found

    Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated carbon dioxide

    Get PDF
    It has recently been demonstrated that foliar nitrogen is positively correlated with surface albedo over a broad range of plant functional types. However, the mechanism(s) driving the nitrogen-albedo relationship remain elusive. This study investigated leaf spectral properties from three deciduous species subjected to either nitrogen or CO2 fertilization and compared results to measured chemical and structural properties. We measured reflectance and transmittance, foliar nitrogen, leaf mass per unit area, water content, and d13C values for stacks of 1, 2, 4, and 8 leaves. Nitrogen was the best predictor of leaf-level albedo of the traits that we measured. There were no significant differences in albedo between CO2 or nitrogen treatments. Across all species there was a negative relationship between albedo and foliar nitrogen, suggesting that the previously observed nitrogen-albedo relationship is not caused by leaf-level interactions, but is likely due to structural properties at the canopy or stand level

    Rapid Prediction of Nutrient Concentration in Citrus Leaves Using Vis-NIR Spectroscopy

    Full text link
    [EN] The nutritional diagnosis of crops is carried out through costly foliar ionomic analysis in laboratories. However, spectroscopy is a sensing technique that could replace these destructive analyses for monitoring nutritional status. This work aimed to develop a calibration model to predict the foliar concentrations of macro and micronutrients in citrus plantations based on rapid non-destructive spectral measurements. To this end, 592 'Clementina de Nules' citrus leaves were collected during several months of growth. In these foliar samples, the spectral absorbance (430-1040 nm) was measured using a portable spectrometer, and the foliar ionomics was determined by emission spectrometry (ICP-OES) for macro and micronutrients, and the Kjeldahl method to quantify N. Models based on partial least squares regression (PLS-R) were calibrated to predict the content of macro and micronutrients in the leaves. The determination coefficients obtained in the model test were between 0.31 and 0.69, the highest values being found for P, K, and B (0.60, 0.63, and 0.69, respectively). Furthermore, the important P, K, and B wavelengths were evaluated using the weighted regression coefficients (BW) obtained from the PLS-R model. The results showed that the selected wavelengths were all in the visible region (430-750 nm) related to foliage pigments. The results indicate that this technique is promising for rapid and non-destructive foliar macro and micronutrient prediction.This work is co-financed by the PNDR and GVA-IVIA (projects 52203, 52204 and by the EU through the ERDF of GVA 2021-2027). Maylin Acosta thanks IFARHU-SENACYT for the Professional Excellence Scholarships, contract No. 270-2021-020. Sandra Munera thanks the Juan de la Cierva-Formación contract (FJC2021-047786-I) co-funded by MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR.Acosta, M.; Quiñones, A.; Munera, S.; De Paz, JM.; Blasco, J. (2023). Rapid Prediction of Nutrient Concentration in Citrus Leaves Using Vis-NIR Spectroscopy. Sensors. 23(14):1-11. https://doi.org/10.3390/s23146530111231

    Leaf nitrogen determination using non-destructive techniques–A review

    Full text link
    © 2017 Taylor & Francis Group, LLC. The optimisation of plant nitrogen-use-efficiency (NUE) has a direct impact on increasing crop production by optimising use of nitrogen fertiliser. Moreover, it protects environment from negative effects of nitrate leaching and nitrous oxide production. Accordingly, nitrogen (N) management in agriculture systems has been major focus of many researchers. Improvement of NUE can be achieved through several methods including more accurate measurement of foliar N contents of crops during different growth phases. There are two types of methods to diagnose foliar N status: destructive and non-destructive. Destructive methods are expensive and time-consuming, as they require tissue sampling and subsequent laboratory analysis. Thus, many farmers find destructive methods to be less attractive. Non-destructive methods are rapid and less expensive but are usually less accurate. Accordingly, improving the accuracy of non-destructive N estimations has become a common goal of many researchers, and various methods varying in complexity and optimality have been proposed for this purpose. This paper reviews various commonly used non-destructive methods for estimating foliar N status of plants

    Remote Sensing for Precision Nitrogen Management

    Get PDF
    This book focuses on the fundamental and applied research of the non-destructive estimation and diagnosis of crop leaf and plant nitrogen status and in-season nitrogen management strategies based on leaf sensors, proximal canopy sensors, unmanned aerial vehicle remote sensing, manned aerial remote sensing and satellite remote sensing technologies. Statistical and machine learning methods are used to predict plant-nitrogen-related parameters with sensor data or sensor data together with soil, landscape, weather and/or management information. Different sensing technologies or different modelling approaches are compared and evaluated. Strategies are developed to use crop sensing data for in-season nitrogen recommendations to improve nitrogen use efficiency and protect the environment

    Using middle-infrared reflectance for burned area detection

    Get PDF
    Tese de doutoramento, Ciências Geofísicas e da Geoinformação (Meteorologia), Universidade de Lisboa, Faculdade de Ciências, 2011A strategy is presented that allows deriving a new index for burned area discrimination over the Amazon and Cerrado regions of Brazil. The index is based on information from the near-infrared (NIR) and middle-infrared (MIR) channels of the Moderate Resolution Imaging Spectroradiometer (MODIS). A thorough review is undertaken of existing methods for retrieving MIR reflectance and an assessment is performed, using simulated and real data, about the added value obtained when using the radiative transfer equation (RTE) instead of the simplified algorithm (KR94) developed by Kaufman and Remer (1994), the most used in the context of burned area studies. It is shown that use of KR94 in tropical environments to retrieve vegetation reflectance may lead to errors that are at least of the same order of magnitude of the reflectance to be retrieved and considerably higher for large values of land surface temperature (LST) and solar zenith angle (SZA). Use of the RTE approach leads to better estimates in virtually all cases, with the exception of high values of LST and SZA, where results from KR94 are also not usable. A transformation is finally defined on the MIR/NIR reflectance space aiming to enhance the spectral information such that vegetated and burned surfaces may be effectively discriminated. The transformation is based on the difference between MIR and NIR in conjunction with the distance from a convergence point in the MIR/NIR space, representative of a totally burnt surface. The transformation allows defining a system of coordinates, one coordinate having a small scatter for pixels associated to vegetation, burned surfaces and soils containing organic matter and the other coordinate covering a wide range of values, from green and dry/stressed vegetation to burned surfaces. The new set of coordinates opens interesting perspectives to applications like drought monitoring and burned area discrimination using remote-sensed information.O coberto vegetal da superfície da Terra tem vindo a sofrer mudanças, por vezes drásticas, que conduzem a alterações tanto na rugosidade da superfície terrestre como no seu albedo, afectando directamente as trocas de calor sensível e latente e de dióxido de carbono entre a superfície terrestre e a atmosfera (Sellers et al., 1996). Neste contexto, as queimadas assumem um papel de extremo relevo (Nobre et al., 1991; O’Brien, 1996; Xue, 1996) na medida em que constituem uma das mais importantes fontes de alteração do coberto vegetal, resultando na destruição de florestas e de recursos naturais, libertando carbono da superfície continental para a atmosfera (Sellers et al., 1995) e perturbando as interacções biosfera-atmosfera (Levine et al., 1995; Scholes, 1995) através de mudanças na rugosidade do solo, na área foliar e noutros parâmetros biofísicos associados ao coberto vegetal. Ora, neste particular, a Amazónia Brasileira constitui um exemplo notável de mudanças no uso da terra e do coberto vegetal nas últimas décadas, como resultado da desflorestação induzida pelo homem bem como por causas naturais (Gedney e Valdes, 2000; Houghton, 2000; Houghton et al., 2000; Lucas et al., 2000), estimando-se que as regiões tropicais sejam responsáveis por cerca de 32% da emissão global de carbono para a atmosfera (Andreae, 1991). Neste contexto, a disponibilidade de informações pormenorizadas e actualizadas sobre as distribuições espacial e temporal de queimadas e de áreas ardidas em regiões tropicais afigura-se crucial, não só para uma melhor gestão dos recursos naturais, mas também para estudos da química da atmosfera e de mudanças climáticas (Zhan et al., 2002). A detecção remota constitui, neste âmbito, uma ferramenta indispensável na medida em que permite uma monitorização em tempo quase real, a qual se revela especialmente útil em áreas extensas e/ou de difícil acesso afectadas pelo fogo (Pereira et al., 1997). Diversos instrumentos, tais como o Land Remote Sensing Satellite/Thematic Mapper (LANDSAT/TM) e o National Oceanic and Atmospheric Administration/Advanced Very High Resolution Radiometer (NOAA/AVHRR) têm vindo a ser extensivamente utilizados na gestão dos fogos florestais, em particular aos níveis da detecção de focos de incêndio e da monitorização de áreas queimadas. Mais recentemente, o instrumento VEGETATION a bordo do Satellite Pour l'Observation de la Terre (SPOT) tem vindo a ser utilizado com sucesso na monitorização de fogos. Finalmente, são de referir os sensores da série Along Track Scanning Radiometer (ATSR) para os quais têm vindo a ser desenvolvidos algoritmos de identificação de focos de incêndio, e ainda o sensor Moderate Resolution Imaging Spectroradiometer (MODIS) que tem vindo a demonstrar capacidades óptimas no que respeita à observação global de fogos, plumas e áreas queimadas. Neste contexto, os métodos actuais de detecção de áreas ardidas através da detecção remota têm vindo a dar prioridade à utilização das regiões do vermelho (0.64 μm) e infravermelho-próximo (0.84 μm) do espectro eletromagnético. No entanto, tanto a região do vermelho quanto a do infravermelho-próximo apresentam a desvantagem de serem sensíveis à presença de aerossóis na atmosfera (Fraser e Kaufman, 1985; Holben et. al., 1986). Desta forma, em regiões tropicais como a Amazónia, onde existem grandes camadas de fumo devido à queima de biomassa, a utlização destas duas regiões do espectro eletromagnético torna-se insatisfatória para a detecção de áreas ardidas. Por outro lado, a região do infravermelho médio (3.7 – 3.9 μm) tem a vantagem de não ser sensível à presença da maior parte dos aerossóis, exceptuando a poeira (Kaufman e Remer, 1994) mostrando-se, ao mesmo tempo, sensível a mudanças na vegetação devido à absorção de água líquida. Com efeito, estudos acerca dos efeitos do vapor de água na atenuação do espectro eletromagnético demonstraram que a região do infravermelho médio é uma das únicas regiões com relativamente pouca atenuação (Kerber e Schut, 1986). Acresce que a região do infravermelho médio apresenta uma baixa variação da irradiância solar (Lean, 1991), tendo-se ainda que a influência das incertezas da emissividade na estimativa da temperatura da superfície é pequena quando comparada com outras regiões térmicas tais como as de 10.5 e 11.5 μm (Salysbury e D’Aria, 1994). A utilização da radiância medida através de satélites na região do infravermelho médio é, no entanto, dificultada pelo facto de esta ser afectada tanto pelo fluxo térmico quanto pelo fluxo solar, contendo, desta forma, duas componentes, uma emitida e outra reflectida, tendo-se que a componente reflectiva contém os fluxos térmico e solar reflectidos pela atmosfera e pela superfície enquanto que as emissões térmicas são oriundas da atmosfera e da superfície. Ora, a componente solar reflectida é de especial interesse para a detecção de áreas ardidas pelo que se torna necessário isolá-la do sinal total medido pelo sensor. Devido à ambiguidade deste sinal, a distinção dos efeitos da reflectância e da temperatura torna-se uma tarefa muito complexa, verificando-se que os métodos em que se não assume nenhuma simplificação, levando-se, portanto, em consideração todos os constituintes do sinal do infravermelho médio se tornam complexos e difíceis de serem aplicados na prática, na medida em que requerem dados auxiliares (e.g. perfis atmosféricos) e ferramentas computacionais (e.g. modelos de tranferência radiativa). Kaufman e Remer (1994) desenvolveram um método simples para estimar a reflectância do infravermelho médio o qual assenta em diversas hipóteses simplificadoras. Apesar do objectivo primário que levou ao desenvolvimento do método ser a identificação de áreas cobertas por vegetação densa e escura em regiões temperadas, este método tem sido lagarmente utilizado nos estudos acerca da discriminação de áreas queimadas, algumas das vezes em regiões tropicais (Roy et al., 1999; Barbosa et al., 1999; Pereira, 1999). Na literatura não existe, no entanto, nenhum estudo acerca da exactidão e precisão deste método quando aplicado com o objectivo de detectar áreas ardidas, em especial em regiões tropicais. Neste sentido, no presente trabalho procedeu-se a um estudo de viabilidade do método proposto por Kaufman e Remer (1994) em simultâneo com a análise da equação de tranferência radiativa na região do infravermelho médio, tendo sido realizados testes de sensibilidade dos algoritmos em relação aos erros nos perfis atmosféricos, ruído do sensor e erros nas estimativas da temperatura da superfície. Para tal recorreu-se ao modelo de transferência radiativa Moderate Spectral Resolution Atmospheric Transmittance and Radiance Code (MODTRAN), dando-se especial atenção ao caso do sensor MODIS. Os resultados demonstraram que a utilização do método proposto por Kaufman e Remer (1994) em regiões tropicais para a estimativa da reflectância no infravermelho médio, leva a erros que são pelo menos da mesma ordem de magnitude do parâmetro estimado e, em alguns casos, muito maior, quando ocorre a combinação de altas temperaturas da superfície terrestre com baixos ângulos zenitais solares. A utilização da equação de transferência radiativa mostrouse uma boa alternativa, desde que estejam disponíveis dados acerca da temperatura da superfíce terrestre assim como dos perfis atmosféricos. Entretanto, nas regiões onde ocorrem altos valores de temperatura da superfície terrestre e baixos ângulos zenitais solares, quaisquer dos dois métodos se mostra pouco utilizável, já que nesta região a estimativa da reflectância constitui um problema mal-posto. Em paralelo, utilizaram-se informações sobre aerossóis de queimada para efectuar simulações do MODTRAN que permitiram avaliar a reposta do canal do infravermelho-médio à este tipo de perturbação do sinal, muito comum na Amazónia Brasileira. A fim de tornar o estudo o mais realístico possível, procedeu-se à coleta de material resultante de queimadas na região Amazónica, mais especificamente em Alta Floresta, Mato Grosso, Brasil. Estes resultado foram então integrados nos estudos em questão, possibilitando a caracterização espectral das áreas ardidas. Com base nos resultados obtido definiu-se uma tranformação no espaço do infravermelho próximo e médio com o objetivo de maximizar a informação espectral de forma a que as superfícies vegetadas pudessem ser efectivamente discriminadas e as áreas ardidas identificadas. A tranformação baseia-se na diferença entre a reflectância nos infravermelhos próximo e médio, em conjunto com a distância a um ponto de convergência no espaço espectral dos infravermelhos próximo e médio, ponto esse representativo de uma área completamente ardida. A tranformação permitiu a definição de um novo sistema de coordenadas, o qual provou ser bastante útil no que diz respeito á identificação de áreas ardidas. Este novo espaço de coordenadas constitui uma inovação na área dos estudos de queimadas, já que permite ao mesmo tempo definir dois tipos de índices, o primeiro dos quais identifica superfícies que contém ou não biomassa e o segundo identifica, de entre as superfícies que contêm biomassa, a quantidade de água presente, podendo variar de vegetação verde (abundância de água) até áreas ardidas (ausência de água). Além de distiguir áreas ardidas, os índices desenvolvidos podem ainda ser aplicados em outros casos como, por exemplo, estudos de estresse hídrico e secas.DSA/INPE; Portuguese Foundation of Science and Technology (Fundação para a Ciência e Tecnologia / FCT)(SFRH/BD/21650/2005

    THE USE OF NARROW SPECTRAL BANDS FOR IMPROVING REMOTE SENSING ESTIMATIONS OF FRACTIONALLY ABSORBED PHOTOSYNTHETICALLY ACTIVE RADIATION

    Get PDF
    Most remote sensing estimations of vegetation variables such as leaf area index (LAI), absorbed photosynthetically active radiation (Apar,), and primary production are made using broad band sensors with a bandwidth of approximately 100 nm. However, high resolution spectrometers are available and have not been fully exploited for the purpose of improving estimates of vegetation variables. The study was directed to investigate the use of high spectral resolution spectroscopy for remote sensing estimates of f apar in vegetation canopies in the presence of nonphotosynthetic background materials such as soil and leaf litter. A high spectral resolution measure defined as the chlorophyll absorption ratio index (CARI) was developed for minimizing the effects of nonphotosynthetic materials in the remote estimates of f apar CARI utilizes three bands at 550, 670, and 700 nm with bandwidth of 10 nm. Simulated canopy reflectance of a range of leaf area index (LAI) were generated with the SAIL model using measurements of 42 different soil types as canopy background. CARI calculated from the simulated canopy reflectance was compared with the broad band vegetation indices such as normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and simple ratio (SR). CARI reduced the effect of nonphotosynthetic background materials in the assessment of vegetation canopy f apar more effectively than broad band vegetation indices

    Remote Sensing of Biophysical Parameters

    Get PDF
    Vegetation plays an essential role in the study of the environment through plant respiration and photosynthesis. Therefore, the assessment of the current vegetation status is critical to modeling terrestrial ecosystems and energy cycles. Canopy structure (LAI, fCover, plant height, biomass, leaf angle distribution) and biochemical parameters (leaf pigmentation and water content) have been employed to assess vegetation status and its dynamics at scales ranging from kilometric to decametric spatial resolutions thanks to methods based on remote sensing (RS) data.Optical RS retrieval methods are based on the radiative transfer processes of sunlight in vegetation, determining the amount of radiation that is measured by passive sensors in the visible and infrared channels. The increased availability of active RS (radar and LiDAR) data has fostered their use in many applications for the analysis of land surface properties and processes, thanks to their insensitivity to weather conditions and the ability to exploit rich structural and texture information. Optical and radar data fusion and multi-sensor integration approaches are pressing topics, which could fully exploit the information conveyed by both the optical and microwave parts of the electromagnetic spectrum.This Special Issue reprint reviews the state of the art in biophysical parameters retrieval and its usage in a wide variety of applications (e.g., ecology, carbon cycle, agriculture, forestry and food security)

    Use of Ground-Based Canopy Reflectance to Determine Radiation Capture, Nitrogen and Water Status, and Final Yield in Wheat

    Get PDF
    Ground-based spectral imaging devices offer an important supplement to satellite imagery. Hand-held, ground-based sensors allow rapid, inexpensive measurements that are not affected by the earth’s atmosphere. They also provide a basis for high altitude spectral indices. We quantified the spectral reflectance characteristics of hard red spring wheat (Triticum aestivum cv. Westbred 936) in research plots subjected to either nitrogen or water stress in a two year study. Both types of stress reduced ground cover, which was evaluated by digital photography and compared with ten spectral reflectance indices. On plots with a similar soil background, simple indices such as the normalized difference vegetation index, ratio vegetation index, and difference vegetation index were equal to or superior to more complex vegetation indices for predicting ground cover. Yield was estimated by integrating the normalized difference vegetation index over the growing season. The coefficient of determination (r2) between integrated normalized difference vegetation index and final yield was 0.86.Unfortunately, none of these indices were able to differentiate between the intensity of green leaf color and ground cover fraction, and thus could not distinguish nitrogen from water stress. We developed a reflective index that can differentiate nitrogen and water stress over a wide range of ground cover. The index is based on the ratio of the green and red variants of the normalized difference vegetation index. The new index was able to distinguish nitrogen and water stress from satellite data using wavelengths less than 1000 nm. This index should be broadly applicable over a wide range of plant types and environments
    corecore