38,901 research outputs found

    Using numerical plant models and phenotypic correlation space to design achievable ideotypes

    Full text link
    Numerical plant models can predict the outcome of plant traits modifications resulting from genetic variations, on plant performance, by simulating physiological processes and their interaction with the environment. Optimization methods complement those models to design ideotypes, i.e. ideal values of a set of plant traits resulting in optimal adaptation for given combinations of environment and management, mainly through the maximization of a performance criteria (e.g. yield, light interception). As use of simulation models gains momentum in plant breeding, numerical experiments must be carefully engineered to provide accurate and attainable results, rooting them in biological reality. Here, we propose a multi-objective optimization formulation that includes a metric of performance, returned by the numerical model, and a metric of feasibility, accounting for correlations between traits based on field observations. We applied this approach to two contrasting models: a process-based crop model of sunflower and a functional-structural plant model of apple trees. In both cases, the method successfully characterized key plant traits and identified a continuum of optimal solutions, ranging from the most feasible to the most efficient. The present study thus provides successful proof of concept for this enhanced modeling approach, which identified paths for desirable trait modification, including direction and intensity.Comment: 25 pages, 5 figures, 2017, Plant, Cell and Environmen

    Quantitative Genetics and Functional-Structural Plant Growth Models: Simulation of Quantitative Trait Loci Detection for Model Parameters and Application to Potential Yield Optimization

    Full text link
    Background and Aims: Prediction of phenotypic traits from new genotypes under untested environmental conditions is crucial to build simulations of breeding strategies to improve target traits. Although the plant response to environmental stresses is characterized by both architectural and functional plasticity, recent attempts to integrate biological knowledge into genetics models have mainly concerned specific physiological processes or crop models without architecture, and thus may prove limited when studying genotype x environment interactions. Consequently, this paper presents a simulation study introducing genetics into a functional-structural growth model, which gives access to more fundamental traits for quantitative trait loci (QTL) detection and thus to promising tools for yield optimization. Methods: The GreenLab model was selected as a reasonable choice to link growth model parameters to QTL. Virtual genes and virtual chromosomes were defined to build a simple genetic model that drove the settings of the species-specific parameters of the model. The QTL Cartographer software was used to study QTL detection of simulated plant traits. A genetic algorithm was implemented to define the ideotype for yield maximization based on the model parameters and the associated allelic combination. Key Results and Conclusions: By keeping the environmental factors constant and using a virtual population with a large number of individuals generated by a Mendelian genetic model, results for an ideal case could be simulated. Virtual QTL detection was compared in the case of phenotypic traits - such as cob weight - and when traits were model parameters, and was found to be more accurate in the latter case. The practical interest of this approach is illustrated by calculating the parameters (and the corresponding genotype) associated with yield optimization of a GreenLab maize model. The paper discusses the potentials of GreenLab to represent environment x genotype interactions, in particular through its main state variable, the ratio of biomass supply over demand

    Soft set theory based decision support system for mining electronic government dataset

    Get PDF
    Electronic government (e-gov) is applied to support performance and create more efficient and effective public services. Grouping data in soft-set theory can be considered as a decision-making technique for determining the maturity level of e-government use. So far, the uncertainty of the data obtained through the questionnaire has not been maximally used as an appropriate reference for the government in determining the direction of future e-gov development policy. This study presents the maximum attribute relative (MAR) based on soft set theory to classify attribute options. The results show that facilitation conditions (FC) are the highest variable in influencing people to use e-government, followed by performance expectancy (PE) and system quality (SQ). The results provide useful information for decision makers to make policies about their citizens and potentially provide recommendations on how to design and develop e-government systems in improving public services

    Assessment of the potential impacts of plant traits across environments by combining global sensitivity analysis and dynamic modeling in wheat

    Full text link
    A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites x 125 years), management practices (3 sowing dates x 2 N fertilization) and CO2CO_2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait x environment x management landscape (\sim 82 million individual simulations in total). The patterns of parameter x environment x management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identifcation of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.Comment: 22 pages, 8 figures. This work has been submitted to PLoS On

    Oak forest carbon and water simulations:Model intercomparisons and evaluations against independent data

    Get PDF
    Models represent our primary method for integration of small-scale, process-level phenomena into a comprehensive description of forest-stand or ecosystem function. They also represent a key method for testing hypotheses about the response of forest ecosystems to multiple changing environmental conditions. This paper describes the evaluation of 13 stand-level models varying in their spatial, mechanistic, and temporal complexity for their ability to capture intra- and interannual components of the water and carbon cycle for an upland, oak-dominated forest of eastern Tennessee. Comparisons between model simulations and observations were conducted for hourly, daily, and annual time steps. Data for the comparisons were obtained from a wide range of methods including: eddy covariance, sapflow, chamber-based soil respiration, biometric estimates of stand-level net primary production and growth, and soil water content by time or frequency domain reflectometry. Response surfaces of carbon and water flux as a function of environmental drivers, and a variety of goodness-of-fit statistics (bias, absolute bias, and model efficiency) were used to judge model performance. A single model did not consistently perform the best at all time steps or for all variables considered. Intermodel comparisons showed good agreement for water cycle fluxes, but considerable disagreement among models for predicted carbon fluxes. The mean of all model outputs, however, was nearly always the best fit to the observations. Not surprisingly, models missing key forest components or processes, such as roots or modeled soil water content, were unable to provide accurate predictions of ecosystem responses to short-term drought phenomenon. Nevertheless, an inability to correctly capture short-term physiological processes under drought was not necessarily an indicator of poor annual water and carbon budget simulations. This is possible because droughts in the subject ecosystem were of short duration and therefore had a small cumulative impact. Models using hourly time steps and detailed mechanistic processes, and having a realistic spatial representation of the forest ecosystem provided the best predictions of observed data. Predictive ability of all models deteriorated under drought conditions, suggesting that further work is needed to evaluate and improve ecosystem model performance under unusual conditions, such as drought, that are a common focus of environmental change discussions

    Effects of processes at the population and community level on carbon dynamics of an ecosystem model

    Get PDF
    Ecological processes at the population and community level are often ignored in biogeochemical models, however, the effects of excluding these processes at the ecosystem level is uncertain. In this study we analyzed the set of behaviors that emerge after introducing population and community processes into an ecosystem carbon model. We used STANDCARB, a hybrid model that incorporates population, community, and ecosystem processes to predict carbon dynamics over time. Our simulations showed that at the population level, colonization and mortality rates can limit the maximum biomass achieved during a successional sequence. Specifically, colonization rates control temporal lags in the initiation of carbon accumulation, and mortality rates can have important effects on annual variation in live biomass. At the community level, differences in species traits and changes in species composition over time introduced significant changes in carbon dynamics. Species with different set of parameters, such as growth and mortality rates, introduce patterns of carbon accumulation that could not be reproduced using a single species with the average of parameters of multiple species or by simulating the most abundant species (strategies commonly employed in terrestrial biogeochemical models). We conclude that omitting population and community processes from biogeochemical models introduces an important source of uncertainty that can impose important limitations for predictions of future carbon balances

    Generalization and evaluation of the process-based forest ecosystem model PnET-CN for other biomes

    Get PDF
    Terrestrial ecosystems play an important role in carbon, water, and nitrogen cycling. Process-based ecosystem models, including PnET-CN, have been widely used to simulate ecosystem processes during the last two decades. PnET-CN is a forest ecosystem model, originally designed to predict ecosystem carbon, water, and nitrogen dynamics of temperate forests under a variety of circumstances. Among terrestrial ecosystem models, PnET-CN offers unique benefits, including simplicity and transparency of its structure, reliance on data-driven parameterization rather than calibration, and use of generalizeable relationships that provide explicit linkages among carbon, water and nitrogen cycles. The objective of our study was to apply PnET-CN to non-forest biomes: grasslands, shrublands, and savannas. We determined parameter values for grasslands and shrublands using the literature and ecophysiological databases. To assess the usefulness of PnET-CN in these ecosystems, we simulated carbon and water fluxes for six AmeriFlux sites: two grassland sites (Konza Prairie and Fermi Prairie), two open shrubland sites (Heritage Land Conservancy Pinyon Juniper Woodland and Sevilleta Desert Shrubland), and two woody savanna sites (Freeman Ranch and Tonzi Ranch). Grasslands and shrublands were simulated using the biome-specific parameters, and savannas were simulated as mixtures of grasslands and forests. For each site, we used flux observations to evaluate modeled carbon and water fluxes: gross primary productivity (GPP), ecosystem respiration (ER), net ecosystem productivity (NEP), evapotranspiration (ET), and water yield. We also evaluated simulated water use efficiency (WUE). PnET-CN generally captured the magnitude, seasonality, and interannual variability of carbon and water fluxes as well as WUE for grasslands, shrublands, and savannas. Overall, our results show that PnET-CN is a promising tool for modeling ecosystem carbon and water fluxes for non-forest biomes (grasslands, shrublands, and savannas), and especially for modeling GPP in mature biomes. Limitations in model performance included an overestimation of seasonal variability in GPP and ET for the two shrubland sites and overestimation of early season ER for the two shrubland sites and Freeman Ranch. Future modifications of PnET-CN for non-forest biomes should focus on belowground processes, including water storage in dry shrubland soils, root growth and respiration in grasslands, and soil carbon fluxes for all biomes
    corecore