907 research outputs found

    Distributed Adaptive Attitude Synchronization of Multiple Spacecraft

    Full text link
    This paper addresses the distributed attitude synchronization problem of multiple spacecraft with unknown inertia matrices. Two distributed adaptive controllers are proposed for the cases with and without a virtual leader to which a time-varying reference attitude is assigned. The first controller achieves attitude synchronization for a group of spacecraft with a leaderless communication topology having a directed spanning tree. The second controller guarantees that all spacecraft track the reference attitude if the virtual leader has a directed path to all other spacecraft. Simulation examples are presented to illustrate the effectiveness of the results.Comment: 13 pages, 11 figures. To appear in SCIENCE CHINA Technological Science

    Similarity Decomposition Approach to Oscillatory Synchronization for Multiple Mechanical Systems With a Virtual Leader

    Full text link
    This paper addresses the oscillatory synchronization problem for multiple uncertain mechanical systems with a virtual leader, and the interaction topology among them is assumed to contain a directed spanning tree. We propose an adaptive control scheme to achieve the goal of oscillatory synchronization. Using the similarity decomposition approach, we show that the position and velocity synchronization errors between each mechanical system (or follower) and the virtual leader converge to zero. The performance of the proposed adaptive scheme is shown by numerical simulation results.Comment: 15 pages, 3 figures, published in 2014 Chinese Control Conferenc

    Second-Order Consensus of Networked Mechanical Systems With Communication Delays

    Full text link
    In this paper, we consider the second-order consensus problem for networked mechanical systems subjected to nonuniform communication delays, and the mechanical systems are assumed to interact on a general directed topology. We propose an adaptive controller plus a distributed velocity observer to realize the objective of second-order consensus. It is shown that both the positions and velocities of the mechanical agents synchronize, and furthermore, the velocities of the mechanical agents converge to the scaled weighted average value of their initial ones. We further demonstrate that the proposed second-order consensus scheme can be used to solve the leader-follower synchronization problem with a constant-velocity leader and under constant communication delays. Simulation results are provided to illustrate the performance of the proposed adaptive controllers.Comment: 16 pages, 5 figures, submitted to IEEE Transactions on Automatic Contro

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    A Survey on Formation Control of Small Satellites

    Get PDF

    Task space consensus in networks of heterogeneous and uncertain robotic systems with variable time-delays

    Get PDF
    This work deals with the leader-follower and the leaderless consensus problems in networks of multiple robot manipulators. The robots are non-identical, kinematically different (heterogeneous), and their physical parameters are uncertain. The main contribution of this work is a novel controller that solves the two consensus problems, in the task space, with the following features: it estimates the kinematic and the dynamic physical parameters; it is robust to interconnecting variable-time delays; it employs the singularity-free unit-quaternions to represent the orientation; and, using energy-like functions, the controller synthesis follows a constructive procedure. Simulations using a network with four heterogeneous manipulators illustrate the performance of the proposed controller.Peer ReviewedPostprint (author's final draft

    Synchronization of multiple rigid body systems: a survey

    Full text link
    The multi-agent system has been a hot topic in the past few decades owing to its lower cost, higher robustness, and higher flexibility. As a particular multi-agent system, the multiple rigid body system received a growing interest since its wide applications in transportation, aerospace, and ocean exploration. Due to the non-Euclidean configuration space of attitudes and the inherent nonlinearity of the dynamics of rigid body systems, synchronization of multiple rigid body systems is quite challenging. This paper aims to present an overview of the recent progress in synchronization of multiple rigid body systems from the view of two fundamental problems. The first problem focuses on attitude synchronization, while the second one focuses on cooperative motion control in that rotation and translation dynamics are coupled. Finally, a summary and future directions are given in the conclusion
    • …
    corecore