326 research outputs found

    Time-Energy Optimal Cluster Space Motion Planning for Mobile Robot Formations

    Get PDF
    The motions of a formation of mobile robots along predetermined paths are optimized according to a tunable time-energy cost function using the cluster space approach to multiagent system specification and control. Upon path-parameterizing cluster state variables describing the geometry and pose of a multirobot group, an optimal control problem is formulated that incorporates formation dynamics and state constraints. The optimal trajectory is derived numerically via a gradient search, iterating over the initial value of one costate. A multirobot formation control simulation is then used to demonstrate the effectiveness of the technique. Results indicate that a substantial tradeoff is made between energy expenditure and motion time when considered as minimization criteria in varying proportions, allowing the operator to tailor mission trajectories according to desired levels of each

    A Framework and Architecture for Multi-Robot Coordination

    Get PDF
    In this paper, we present a framework and the software architecture for the deployment of multiple autonomous robots in an unstructured and unknown environment with applications ranging from scouting and reconnaissance, to search and rescue and manipulation tasks. Our software framework provides the methodology and the tools that enable robots to exhibit deliberative and reactive behaviors in autonomous operation, to be reprogrammed by a human operator at run-time, and to learn and adapt to unstructured, dynamic environments and new tasks, while providing performance guarantees. We demonstrate the algorithms and software on an experimental testbed that involves a team of car-like robots using a single omnidirectional camera as a sensor without explicit use of odometry

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Swarm Robotics: An Extensive Research Review

    Get PDF

    Object Manipulation using a Multirobot Cluster with Force Sensing

    Get PDF
    This research explored object manipulation using multiple robots by developing a control system utilizing force sensing. Multirobot solutions provide advantages of redundancy, greater coverage, fault-tolerance, distributed sensing and actuation, and reconfigurability. In object manipulation, a variety of solutions have been explored with different robot types and numbers, control strategies, sensors, etc. This research involved the integration of force sensing with a centralized position control method of two robots (cluster control) and building it into an object level controller. This controller commands the robots to push the object based on the measured interaction forces between them while maintaining proper formation with respect to each other and the object. To test this controller, force sensor plates were attached to the front of the Pioneer 3-AT robots. The object is a long, thin, rectangular prism made of cardboard, filled with paper for weight. An Ultra Wideband system was used to track the positions and headings of the robots and object. Force sensing was integrated into the position cluster controller by decoupling robot commands, derived from position and force control loops. The result was a successful pair of experiments demonstrating controlled transportation of the object, validating the control architecture. The robots pushed the object to follow linear and circular trajectories. This research is an initial step toward a hybrid force/position control architecture with cluster control for object transportation by a multirobot system

    Precise Localization and Formation Control of Swarm Robots via Wireless Sensor Networks

    Get PDF
    Precise localization and formation control are one of the key technologies to achieve coordination and control of swarm robots, which is also currently a bottleneck for practical applications of swarm robotic systems. Aiming at overcoming the limited individual perception and the difficulty of achieving precise localization and formation, a localization approach combining dead reckoning (DR) with wireless sensor network- (WSN-) based methods is proposed in this paper. Two kinds of WSN localization technologies are adopted in this paper, that is, ZigBee-based RSSI (received signal strength indication) global localization and electronic tag floors for calibration of local positioning. First, the DR localization information is combined with the ZigBee-based RSSI position information using the Kalman filter method to achieve precise global localization and maintain the robot formation. Then the electronic tag floors provide the robots with their precise coordinates in some local areas and enable the robot swarm to calibrate its formation by reducing the accumulated position errors. Hence, the overall performance of localization and formation control of the swarm robotic system is improved. Both of the simulation results and the experimental results on a real schematic system are given to demonstrate the success of the proposed approach

    A Mechanism for Dynamic Coordination of Multiple Robots

    Get PDF
    In this paper, we present a mechanism for coordinating multiple robots in the execution of cooperative tasks. The basic idea in the paper is to assign to each robot in the team, a role that determines its actions during the cooperation. The robots dynamically assume and exchange roles in a synchronized manner in order to perform the task successfully, adapting to unexpected events in the environment. We model this mechanism using a hybrid systems framework and apply it in different cooperative tasks: cooperative manipulation and cooperative search and transportation. Simulations and real experiments demonstrating the effectiveness of the proposed mechanism are presented
    corecore