212 research outputs found

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Development of Fault Diagnosis and Fault Tolerant Control Algorithms with Application to Unmanned Systems

    Get PDF
    Unmanned vehicles have been increasingly employed in real life. They include unmanned air vehicles (UAVs), unmanned ground vehicles (UGVs), unmanned spacecrafts, and unmanned underwater vehicles (UUVs). Unmanned vehicles like any other autonomous systems need controllers to stabilize and control them. On the other hand unmanned systems might subject to different faults. Detecting a fault, finding the location and severity of it, are crucial for unmanned vehicles. Having enough information about a fault, it is needed to redesign controller based on post fault characteristics of the system. The obtained controlled system in this case can tolerate the fault and may have a better performance. The main focus of this thesis is to develop Fault Detection and Diagnosis (FDD) algorithms, and Fault Tolerant Controllers (FTC) to increase performance, safety and reliability of various missions using unmanned systems. In the field of unmanned ground vehicles, a new kinematical control method has been proposed for the trajectory tracking of nonholonomic Wheeled Mobile Robots (MWRs). It has been experimentally tested on an UGV, called Qbot. A stable leader-follower formation controller for time-varying formation configuration of multiple nonholonomic wheeled mobile robots has also been presented and is examined through computer simulation. In the field of unmanned aerial vehicles, Two-Stage Kalman Filter (TSKF), Adaptive Two-Stage Kalman Filter (ATSKF), and Interacting Multiple Model (IMM) filter were proposed for FDD of the quadrotor helicopter testbed in the presence of actuator faults. As for space missions, an FDD algorithm for the attitude control system of the Japan Canada Joint Collaboration Satellite - Formation Flying (JC2Sat-FF) mission has been developed. The FDD scheme was achieved using an IMM-based FDD algorithm. The efficiency of the FDD algorithm has been shown through simulation results in a nonlinear simulator of the JC2Sat-FF. A fault tolerant fuzzy gain-scheduled PID controller has also been designed for a quadrotor unmanned helicopter in the presence of actuator faults. The developed FDD algorithms and fuzzy controller were evaluated through experimental application to a quadrotor helicopter testbed called Qball-X4

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics

    Feasible, Robust and Reliable Automation and Control for Autonomous Systems

    Get PDF
    The Special Issue book focuses on highlighting current research and developments in the automation and control field for autonomous systems as well as showcasing state-of-the-art control strategy approaches for autonomous platforms. The book is co-edited by distinguished international control system experts currently based in Sweden, the United States of America, and the United Kingdom, with contributions from reputable researchers from China, Austria, France, the United States of America, Poland, and Hungary, among many others. The editors believe the ten articles published within this Special Issue will be highly appealing to control-systems-related researchers in applications typified in the fields of ground, aerial, maritime vehicles, and robotics as well as industrial audiences

    Learning Generalization and Adaptation of Movement Primitives for Humanoid Robots

    Get PDF

    Stability and robustness of adaptive controllers for underactuated Lagrangian systems and robotic networks

    Get PDF
    This dissertation studies the stability and robustness of an adaptive control framework for underactuated Lagrangian systems and robotic networks. In particular, an adaptive control framework is designed for a manipulator, which operates on an underactuated dynamic platform. The framework promotes the use of a filter in the control input to improve the system robustness. The characteristics of the controller are represented by two decoupled indicators. First, the adaptation gain determines the rate of adaptation, as well as the deviation between the adaptive control system and a nonadaptive reference system governing the ideal response. Second, the filter bandwidth determines the tracking performance, as well as the system robustness. The ability of the control scheme to tolerate time delay in the control loop, which is an indicator of robustness, is explored using numerical simulations, estimation of the time-delay margin of an equivalent linear, time-invariant system, and parameter continuation for Hopf bifurcation analysis. This dissertation also performs theoretical study of the delay robustness of the control framework. The analysis shows that the controller has a positive lower bound for the time-delay margin by exploring a number of properties of delay systems, especially the continuity of their solutions in the delay, uniformly in time. In particular, if the input delay is below the lower bound, then the state and control input of the closed-loop system follow those of a nonadaptive, robust reference system closely. A method for computing the lower bound for the delay robustness using a Pad\'{e} approximant is proposed. The results show that the minimum delay that destabilizes the system, which may also be estimated by forward simulation, is always larger than the value computed by the proposed method. The control framework is extended to the synchronization and consensus of networked manipulators operating on an underactuated dynamic platform in the presence of communication delays. The theoretical analysis based on input-output maps of functional differential equations shows that the adaptive control system's behavior matches closely that of a nonadaptive reference system. The tracking-synchronization objective is achieved despite the effects of communication delays and unknown dynamics of the platform. When there is no desired trajectory common to the networked manipulators, a modified controller drives all robots to a consensus configuration. A further modification is proposed that allows for the control of the constant and time-varying consensus values using a leader-follower scheme. Simulation results illustrate the performance of the proposed control algorithms

    Stable Segment Formation Control of Multi-Robot System

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore