391 research outputs found

    Distributed Dynamic Event-Based Control for Nonlinear Multi-Agent Systems

    Get PDF
    This brief studies the synchronization problem for a class of QUAD and interconnected nonlinear multi-agent systems (MASs). A dynamic event-based control scheme is designed, and two event-based synchronization conditions are constructed by utilizing stability theory. Moreover, the Zeno-behavior can be excluded in the MASs. An example and its simulation are given to verify the applicability of the designed dynamic event-based protocol for MASs

    Event-triggered Synchronization of Multi-agent Systems with Partial Input Saturation

    Get PDF
    This paper is concerned with the distributed event/self-triggered synchronization problem for general linear multi-agent systems with partial input saturation. Both the event-based and self-triggered laws are designed using the local sampled, possibly saturated, state, which ensures the bounded synchronization of the multi-agent systems, and exclusion of the Zeno-behavior. The continuous communication between agents is avoided under these triggering protocols. Different from the existing related works, we show the fully distributed design for multi-agent systems, where the synchronization criteria, the designed input laws, and the proposed triggering protocols do not depend on any global information of the communication topology. In addition, the computation load of multi-agent systems is reduced significantly

    Asynchronous Communication under Reliable and Unreliable Network Topologies in Distributed Multiagent Systems: A Robust Technique for Computing Average Consensus

    Get PDF
    Nearly all applications in multiagent systems demand precision, robustness, consistency, and rapid convergence in designing of distributed consensus algorithms. Keeping this thing in our sight, this research suggests a robust consensus protocol for distributed multiagent networks, continuing asynchronous communications, where agent’s states values are updated at diverse interval of time. This paper presents an asynchronous communication for both reliable and unreliable network topologies. The primary goal is to delineate local control inputs to attain time synchronization by processing the update information received by the agents associated in a communication topology. Additionally in order to accomplish the robust convergence, modelling of convergence analysis is conceded by commissioning the basic principles of graph and matrix theory alongside the suitable lemmas. Moreover, statistical examples presenting four diverse scenarios are provided in the end; produced results are the recognisable indicator to authenticate the robust effectiveness of the proposed algorithm. Likewise, a simulation comparison of the projected algorithm with the other existing approaches is conducted, considering different performance parameters are being carried out to support our claim

    Cluster Consensus on Discrete-Time Multi-Agent Networks

    Get PDF
    Nowadays, multi-agent networks are ubiquitous in the real world. Over the last decade, consensus has received an increasing attention from various disciplines. This paper investigates cluster consensus for discrete-time multi-agent networks. By utilizing a special coupling matrix and the Kronecker product, a criterion based on linear matrix inequality (LMI) is obtained. It is shown that the addressed discrete-time multi-agent networks achieve cluster consensus if a certain LMI is feasible. Finally, an example is given to demonstrate the effectiveness of the proposed criterion
    • …
    corecore