122 research outputs found

    Stability and String Stability Analysis of Formation Control Architectures for Platooning.

    Get PDF
    This thesis presents theoretical results for stability and string stability of formation control architectures for platooning. We consider three important interconnection topologies for vehicles travelling in a straight line as a string: leader following, cyclic and bidirectional. For the leader following topology we discuss modifications that allow reduced coordination requirements. In the first case we consider the use of the leader velocity as the state to be broadcast to the followers, rather than the standard use of the leader position. This selection yields a formation control architecture that achieves string stability even under time delays in the state broadcast, while reducing typical coordination requirements of leader following architectures. For the second modification we change the way in which the leader position is sent across the string to every follower. This technique keeps some of the good transient properties of the standard leader following architecture but eliminates most of the coordination requirements for the followers. However, we show that this technique does not provide string stability when time delays are present in the communication. The second topology that we discuss is a cyclic one, where the first member of the platoon is forced to track the last one. We discuss two strategies: one where the inter-vehicle spacings may follow a constanttime headway spacing policy and one where an independent leader broadcasts its position to every member of a cyclic platoon. For both strategies we obtain closed form expressions for the transfer functions from disturbances to inter-vehicle spacings. These expressions allow us to show that if the design parameters are not properly chosen, the vehicle platoon may become unstable when the string size is greater than a critical number. On the contrary, if the design parameters are well chosen, both architectures can be made stable and string stable for any size of the platoon. The final topology that we consider is bidirectional, where every member of the platoon, with the exception of the first and last, use measurements of the two nearest neighbours to control their position within the string. Although the derivations are more complex than in the two previous unidirectional cases, we obtain closed form epressions for the dynamics of the platoon. These expressions are in the form of simple transfer functions from disturbances to vehicles. They allow us to obtain stability results for any size of the platoon and understand the behaviour of the least stable pole location as the string size increases. All of the results obtained are illustrated by numerical examples and ad-hoc simulations

    Stability and String Stability Analysis of Formation Control Architectures for Platooning.

    Get PDF
    This thesis presents theoretical results for stability and string stability of formation control architectures for platooning. We consider three important interconnection topologies for vehicles travelling in a straight line as a string: leader following, cyclic and bidirectional. For the leader following topology we discuss modifications that allow reduced coordination requirements. In the first case we consider the use of the leader velocity as the state to be broadcast to the followers, rather than the standard use of the leader position. This selection yields a formation control architecture that achieves string stability even under time delays in the state broadcast, while reducing typical coordination requirements of leader following architectures. For the second modification we change the way in which the leader position is sent across the string to every follower. This technique keeps some of the good transient properties of the standard leader following architecture but eliminates most of the coordination requirements for the followers. However, we show that this technique does not provide string stability when time delays are present in the communication. The second topology that we discuss is a cyclic one, where the first member of the platoon is forced to track the last one. We discuss two strategies: one where the inter-vehicle spacings may follow a constanttime headway spacing policy and one where an independent leader broadcasts its position to every member of a cyclic platoon. For both strategies we obtain closed form expressions for the transfer functions from disturbances to inter-vehicle spacings. These expressions allow us to show that if the design parameters are not properly chosen, the vehicle platoon may become unstable when the string size is greater than a critical number. On the contrary, if the design parameters are well chosen, both architectures can be made stable and string stable for any size of the platoon. The final topology that we consider is bidirectional, where every member of the platoon, with the exception of the first and last, use measurements of the two nearest neighbours to control their position within the string. Although the derivations are more complex than in the two previous unidirectional cases, we obtain closed form epressions for the dynamics of the platoon. These expressions are in the form of simple transfer functions from disturbances to vehicles. They allow us to obtain stability results for any size of the platoon and understand the behaviour of the least stable pole location as the string size increases. All of the results obtained are illustrated by numerical examples and ad-hoc simulations

    Cooperative control of autonomous connected vehicles from a Networked Control perspective: Theory and experimental validation

    Get PDF
    Formation control of autonomous connected vehicles is one of the typical problems addressed in the general context of networked control systems. By leveraging this paradigm, a platoon composed by multiple connected and automated vehicles is represented as one-dimensional network of dynamical agents, in which each agent only uses its neighboring information to locally control its motion, while it aims to achieve certain global coordination with all other agents. Within this theoretical framework, control algorithms are traditionally designed based on an implicit assumption of unlimited bandwidth and perfect communication environments. However, in practice, wireless communication networks, enabling the cooperative driving applications, introduce unavoidable communication impairments such as transmission delay and packet losses that strongly affect the performances of cooperative driving. Moreover, in addition to this problem, wireless communication networks can suffer different security threats. The challenge in the control field is hence to design cooperative control algorithms that are robust to communication impairments and resilient to cyber attacks. The work aim is to tackle and solve these challenges by proposing different properly designed control strategies. They are validated both in analytical, numerical and experimental ways. Obtained results confirm the effectiveness of the strategies in coping with communication impairments and security vulnerabilities

    Scalability in nonlinear network systems affected by delays and disturbances

    Full text link
    This paper is concerned with the study of scalability in nonlinear heterogeneous networks affected by communication delays and disturbances. After formalizing the notion of scalability, we give two sufficient conditions to assess this property. Our results can be used to study leader-follower and leaderless networks and also allow to consider the case when the desired configuration of the system changes over time. We show how our conditions can be turned into design guidelines to guarantee scalability and illustrate their effectiveness via numerical examples.Comment: Accepted to be published on IEEE Transactions on Control of Network System

    Research on Information Flow Topology for Connected Autonomous Vehicles

    Get PDF
    Information flow topology plays a crucial role in connected autonomous vehicles (CAVs). It describes how CAVs communicate and exchange information with each other. It predominantly affects the platoon\u27s performance, including the convergence time, robustness, stability, and scalability. It also dramatically affects the controller design of CAVs. Therefore, studying information flow topology is necessary to ensure the platoon\u27s stability and improve its performance. Advanced sliding mode controllers and optimisation strategies for information flow topology are investigated in this project. Firstly, the impact of information flow topology on the platoon is studied regarding tracking ability, fuel economy and driving comfort. A Pareto optimal information flow topology offline searching approach is proposed using a non-dominated sorting genetic algorithm (NSGA-II) to improve the platoon\u27s overall performance while ensuring stability. Secondly, the concept of asymmetric control is introduced in the topological matrix. For a linear CAVs model with time delay, a sliding mode controller is designed to target the platoon\u27s tracking performance. Moreover, the Lyapunov analysis is used via Riccati inequality to guarantee the platoon\u27s internal stability and input-to-output string stability. Then NSGA-II is used to find the homogeneous Pareto optimal asymmetric degree to improve the platoon\u27s performance. A similar approach is designed for a nonlinear CAVs model to find the Pareto heterogeneous asymmetric degree and improve the platoon\u27s performance. Thirdly, switching topology is studied to better deal with the platoon\u27s communication problems. A two-step switching topology framework is introduced. In the first step, an offline Pareto optimal topology search with imperfect communication scenarios is applied. The platoon\u27s performance is optimised using a multi-objective evolutionary algorithm based on decomposition (MOEA/D). In the second step, the optimal topology is switched and selected from among the previously obtained Pareto optimal topology candidates in real-time to minimise the control cost. For a continuous nonlinear heterogeneous platoon with actuator faults, a sliding mode controller with an adaptive mechanism is developed. Then, the Lyapunov approach is applied to the platoon\u27s tracking error dynamics, ensuring the systems uniformly ultimately bounded stability and string stability. For a discrete nonlinear heterogeneous platoon with packet loss, a discrete sliding mode controller with a double power reaching law is designed, and a modified MOEA/D with two opposing adaptive mechanisms is applied in the two-step framework. Simulations verify all the proposed controllers and frameworks, and experiments also test some. The results show the proposed strategy\u27s effectiveness and superiority in optimising the platoon\u27s performance with multiple objectives
    corecore