93,889 research outputs found

    Stabilizing leader election in population protocols

    Get PDF
    In this paper we address the stabilizing leader election problem in the population protocols model augmented with oracles. Population protocols is a recent model of computation that captures the interactions of biological systems. In this model emergent global behavior is observed while anonymous finite-state agents(nodes) perform local peer interactions. Uniform self-stabilizing leader election is impossible in such systems without additional assumptions. Therefore, the classical model has been augmented with the eventual leader detector, Omega?, that eventually detects the presence or absence of a leader. In the augmented model several solutions for leader election in rings and complete networks have been proposed. In this work we extend the study to trees and arbitrary topologies. We propose deterministic and probabilistic solutions. All the proposed algorithms are memory optimal --- they need only one memory bit per agent. Additionally, we prove the necessity of the eventual leader detector even in environments helped by randomization

    Fast Byzantine Leader Election in Dynamic Networks

    Get PDF
    International audienceWe study the fundamental Byzantine leader election problem in dynamic networks where the topology can change from round to round and nodes can also experience heavy churn (i.e., nodes can join and leave the network continuously over time). We assume the full information model where the Byzantine nodes have complete knowledge about the entire state of the network at every round (including random choices made by all the nodes), have unbounded computational power and can deviate arbitrarily from the protocol. The churn is controlled by an adversary that has complete knowledge and control over which nodes join and leave and at what times and also may rewire the topology in every round and has unlimited computational power, but is oblivious to the random choices made by the algorithm.Our main contribution is an O(log^3 n) round algorithm that achieves Byzantine leader election under the presence of up to O(n^(1/2)−ε) Byzantinenodes (for a small constant ε > 0) and a churn of up to O( √n/ polylog(n)) nodes per round (where n is the stable network size). The algorithm elects a leader with probability at least 1 − n^(−Ω(1)) and guarantees that it is an honest node with probability at least 1 − n^(−Ω(1)); assuming the algorithm succeeds, the leader’s identity will be known to a 1 − o(1) fraction of the honest nodes. Our algorithm is fully-distributed, lightweight, and is simple to implement. It is also scalable, as it runs in polylogarithmic (in n) time and requires nodes to send and receive messages of only polylogarithmic size per round. To the best of our knowledge, our algorithm is the first scalable solution for Byzantine leader election in a dynamic network with a high rate of churn; our protocol can also be used to solve Byzantine agreement in a straightforward way. We also show how to implement an (almost-everywhere) public coin with constant bias in a dynamic network with Byzantine nodes and provide a mechanism for enabling honest nodes to store information reliably in the network, which might be of independent interest

    Leader Election for Anonymous Asynchronous Agents in Arbitrary Networks

    Get PDF
    We study the problem of leader election among mobile agents operating in an arbitrary network modeled as an undirected graph. Nodes of the network are unlabeled and all agents are identical. Hence the only way to elect a leader among agents is by exploiting asymmetries in their initial positions in the graph. Agents do not know the graph or their positions in it, hence they must gain this knowledge by navigating in the graph and share it with other agents to accomplish leader election. This can be done using meetings of agents, which is difficult because of their asynchronous nature: an adversary has total control over the speed of agents. When can a leader be elected in this adversarial scenario and how to do it? We give a complete answer to this question by characterizing all initial configurations for which leader election is possible and by constructing an algorithm that accomplishes leader election for all configurations for which this can be done

    Robust Leader Election in a Fast-Changing World

    Full text link
    We consider the problem of electing a leader among nodes in a highly dynamic network where the adversary has unbounded capacity to insert and remove nodes (including the leader) from the network and change connectivity at will. We present a randomized Las Vegas algorithm that (re)elects a leader in O(D\log n) rounds with high probability, where D is a bound on the dynamic diameter of the network and n is the maximum number of nodes in the network at any point in time. We assume a model of broadcast-based communication where a node can send only 1 message of O(\log n) bits per round and is not aware of the receivers in advance. Thus, our results also apply to mobile wireless ad-hoc networks, improving over the optimal (for deterministic algorithms) O(Dn) solution presented at FOMC 2011. We show that our algorithm is optimal by proving that any randomized Las Vegas algorithm takes at least omega(D\log n) rounds to elect a leader with high probability, which shows that our algorithm yields the best possible (up to constants) termination time.Comment: In Proceedings FOMC 2013, arXiv:1310.459
    • …
    corecore