6 research outputs found

    Using Caenorhabditis elegans as a model organism for evaluating extracellular signal-regulated kinase docking domain inhibitors

    Get PDF
    We have recently identified several novel ATP-independent inhibitors that target the extracellular signal-regulated kinase-2 (ERK2) protein and inhibit substrate phosphorylation. To further characterize these compounds, we describe the use of C. elegans as a model organism. C. elegans is recognized as a versatile and cost effective model for use in drug development. These studies take advantage of the well characterized process of vulva development and egg laying, which requires MPK-1, the homolog to human ERK2. It is shown that treatment of C. elegans eggs or larvae prior to vulva formation with a previously identified lead compound (76) caused up to 50% reduction in the number of eggs produced from the adult worm. In contrast, compound 76 had no effect on egg laying in young adult or adult worms with fully formed vulva. The reduction in egg laying by the test compound was not due to effects on C. elegans life span, general toxicity, or non-specific stress. However, compound 76 did show selective inhibition of phosphorylation of LIN-1, a MPK-1 substrate essential for vulva precursor cell formation. Moreover, compound 76 inhibited cell fusion necessary for vulva maturation and reduced the multivulva phenotype in LET-60 (Ras) mutant worms that have constitutive activation of MPK-1. These findings support the use of C. elegans as a model organism to evaluate the selectivity and specificity of novel ERK targeted compounds

    Characterization of ERK Docking Domain Inhibitors that Induce Apoptosis by Targeting Rsk-1 and Caspase-9

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The extracellular signal-regulated kinase-1 and 2 (ERK1/2) proteins play an important role in cancer cell proliferation and survival. ERK1/2 proteins also are important for normal cell functions. Thus, anti-cancer therapies that block all ERK1/2 signaling may result in undesirable toxicity to normal cells. As an alternative, we have used computational and biological approaches to identify low-molecular weight compounds that have the potential to interact with unique ERK1/2 docking sites and selectively inhibit interactions with substrates involved in promoting cell proliferation.</p> <p>Methods</p> <p>Colony formation and water soluble tetrazolium salt (WST) assays were used to determine the effects of test compounds on cell proliferation. Changes in phosphorylation and protein expression in response to test compound treatment were examined by immunoblotting and <it>in vitro </it>kinase assays. Apoptosis was determined with immunoblotting and caspase activity assays.</p> <p>Results</p> <p><it>In silico </it>modeling was used to identify compounds that were structurally similar to a previously identified parent compound, called <b>76</b>. From this screen, several compounds, termed <b>76.2</b>, <b>76.3</b>, and <b>76.4 </b>sharing a common thiazolidinedione core with an aminoethyl side group, inhibited proliferation and induced apoptosis of HeLa cells. However, the active compounds were less effective in inhibiting proliferation or inducing apoptosis in non-transformed epithelial cells. Induction of HeLa cell apoptosis appeared to be through intrinsic mechanisms involving caspase-9 activation and decreased phosphorylation of the pro-apoptotic Bad protein. Cell-based and <it>in vitro </it>kinase assays indicated that compounds <b>76.3 </b>and <b>76.4 </b>directly inhibited ERK-mediated phosphorylation of caspase-9 and the p90Rsk-1 kinase, which phosphorylates and inhibits Bad, more effectively than the parent compound <b>76</b>. Further examination of the test compound's mechanism of action showed little effects on related MAP kinases or other cell survival proteins.</p> <p>Conclusion</p> <p>These findings support the identification of a class of ERK-targeted molecules that can induce apoptosis in transformed cells by inhibiting ERK-mediated phosphorylation and inactivation of pro-apoptotic proteins.</p

    IMPROVING RATIONAL DRUG DESIGN BY INCORPORATING NOVEL BIOPHYSICAL INSIGHT

    Get PDF
    Computer-aided drug design is a valuable and effective complement to conventional experimental drug discovery methods. In this thesis, we will discuss our contributions to advancing a number of outstanding challenges in computational drug discovery: understanding protein flexibility and dynamics, the role of water in small molecule binding and using and understanding large amounts of data. First, we describe the molecular steps involved in the induced-fit binding mechanism of p53 and MDM2. We use molecular dynamics simulations to understand the key chemistry responsible for the dynamic transition between the apo and holo structures of MDM2. This chemistry involves not only the indole side chain of the anchor residue of p53, Trp23, but surprisingly, the beta-carbon as well. We demonstrate that this chemistry plays a key role in opening the binding site by coordinating the position and orientation of MDM2 residues, Val93 and His96, through a previously undescribed transition state. We confirm these findings by observing that this chemistry is preserved in all available inhibitor-bound MDM2 co-crystal structures. Second, we discuss our advances in understanding water molecules in ligand binding sites by data mining the structural information of water molecules found in X-ray crystal structures. We examine a large set of paired bound and unbound proteins and compare the water molecules found in the binding site of the unbound structure to the functional groups on the ligand that displace them upon binding. We identify a number of generalized functional groups that are associated with characteristic clusters of water molecules. This information has been utilized in several successful and ongoing virtual screens. Third, we discuss software that we have developed that allows for very efficient exploration and selection of virtual screening results. Implemented as a PyMOL plugin, ClusterMols clusters compounds based on a user-defined level of chemical similarity. The software also provides advanced visualization tools and a number of controls for quickly navigating and selecting compounds of interest, as well as the ability to check online for available vendors. Finally, we present several published examples of modeling protein-lipid and protein-small molecules interactions for a number of important targets including ABL, c-Src and 5-LOX

    Scope of Selective Heterocycles from Organic and Pharmaceutical Perspective

    Get PDF
    Scope of Selective Heterocycles from Organic and Pharmaceutical Perspective is a compilation of bioactive-chosen heterocyclic scaffolds intended for postgraduates, research scholars, pharmaceutical scientists, and others interested in an appreciation of the title subject. It is an edited book and is not comprehensive as well in the mentioned field. Few synthetic strategies along with bioactivity are presented, and some limitations were raised in order to arouse curiosity of the reader

    Current Frontiers and Perspectives in Cell Biology

    Get PDF
    A numerous internationally renowned authors in the pages of this book present the views of the fields of cell biology and their own research results or review of current knowledge. Chapters are divided into five sections that are dedicated to cell structures and functions, genetic material, regulatory mechanisms, cellular biomedicine and new methods in cell biology. Multidisciplinary and often quite versatile approach by many authors have imposed restrictions of this classification, so it is certain that many chapters could belong to the other sections of this book. The current frontiers, on the manner in which they described in the book, can be a good inspiration to many readers for further improving, and perspectives which are highlighted can be seen in many areas of fundamental biology, biomedicine, biotechnology and other applications of knowledge of cell biology. The book will be very useful for beginners to gain insight into new area, as well as experts to find new facts and expanding horizons
    corecore