1,535 research outputs found

    Middleware-based Database Replication: The Gaps between Theory and Practice

    Get PDF
    The need for high availability and performance in data management systems has been fueling a long running interest in database replication from both academia and industry. However, academic groups often attack replication problems in isolation, overlooking the need for completeness in their solutions, while commercial teams take a holistic approach that often misses opportunities for fundamental innovation. This has created over time a gap between academic research and industrial practice. This paper aims to characterize the gap along three axes: performance, availability, and administration. We build on our own experience developing and deploying replication systems in commercial and academic settings, as well as on a large body of prior related work. We sift through representative examples from the last decade of open-source, academic, and commercial database replication systems and combine this material with case studies from real systems deployed at Fortune 500 customers. We propose two agendas, one for academic research and one for industrial R&D, which we believe can bridge the gap within 5-10 years. This way, we hope to both motivate and help researchers in making the theory and practice of middleware-based database replication more relevant to each other.Comment: 14 pages. Appears in Proc. ACM SIGMOD International Conference on Management of Data, Vancouver, Canada, June 200

    Parallel Deferred Update Replication

    Full text link
    Deferred update replication (DUR) is an established approach to implementing highly efficient and available storage. While the throughput of read-only transactions scales linearly with the number of deployed replicas in DUR, the throughput of update transactions experiences limited improvements as replicas are added. This paper presents Parallel Deferred Update Replication (P-DUR), a variation of classical DUR that scales both read-only and update transactions with the number of cores available in a replica. In addition to introducing the new approach, we describe its full implementation and compare its performance to classical DUR and to Berkeley DB, a well-known standalone database

    Efficient middleware for database replication

    Get PDF
    Dissertação de Mestrado em Engenharia InformáticaDatabase systems are used to store data on the most varied applications, like Web applications, enterprise applications, scientific research, or even personal applications. Given the large use of database in fundamental systems for the users, it is necessary that database systems are efficient e reliable. Additionally, in order for these systems to serve a large number of users, databases must be scalable, to be able to process large numbers of transactions. To achieve this, it is necessary to resort to data replication. In a replicated system, all nodes contain a copy of the database. Then, to guarantee that replicas converge, write operations must be executed on all replicas. The way updates are propagated leads to two different replication strategies. The first is known as asynchronous or optimistic replication, and the updates are propagated asynchronously after the conclusion of an update transaction. The second is known as synchronous or pessimistic replication, where the updates are broadcasted synchronously during the transaction. In pessimistic replication, contrary to the optimistic replication, the replicas remain consistent. This approach simplifies the programming of the applications, since the replication of the data is transparent to the applications. However, this approach presents scalability issues, caused by the number of exchanged messages during synchronization, which forces a delay to the termination of the transaction. This leads the user to experience a much higher latency in the pessimistic approach. On this work is presented the design and implementation of a database replication system, with snapshot isolation semantics, using a synchronous replication approach. The system is composed by a primary replica and a set of secondary replicas that fully replicate the database- The primary replica executes the read-write transactions, while the remaining replicas execute the read-only transactions. After the conclusion of a read-write transaction on the primary replica the updates are propagated to the remaining replicas. This approach is proper to a model where the fraction of read operations is considerably higher than the write operations, allowing the reads load to be distributed over the multiple replicas. To improve the performance of the system, the clients execute some operations speculatively, in order to avoid waiting during the execution of a database operation. Thus, the client may continue its execution while the operation is executed on the database. If the result replied to the client if found to be incorrect, the transaction will be aborted, ensuring the correctness of the execution of the transactions

    Multi-Master Replication for Snapshot Isolation Databases

    Get PDF
    Lazy replication with snapshot isolation (SI) has emerged as a popular choice for distributed databases. However, lazy replication requires the execution of update transactions at one (master) site so that it is relatively easy for a total SI order to be determined for consistent installation of updates in the lazily replicated system. We propose a set of techniques that support update transaction execution over multiple partitioned sites, thereby allowing the master to scale. Our techniques determine a total SI order for update transactions over multiple master sites without requiring global coordination in the distributed system, and ensure that updates are installed in this order at all sites to provide consistent and scalable replication with SI. We have built our techniques into PostgreSQL and demonstrate their effectiveness through experimental evaluation.1 yea

    A formal characterization of SI-based ROWA replication protocols

    Full text link
    Snapshot isolation (SI) is commonly used in some commercial DBMSs with a multiversion concurrency control mechanism since it never blocks read-only transactions. Recent database replication protocols have been designed using SI replicas where transactions are firstly executed in a delegate replica and their updates (if any) are propagated to the rest of the replicas at commit time; i.e. they follow the Read One Write All (ROWA) approach. This paper provides a formalization that shows the correctness of abstract protocols which cover these replication proposals. These abstract protocols differ in the properties demanded for achieving a global SI level and those needed for its generalized SI (GSI) variant ¿ allowing reads from old snapshots. Additionally, we propose two more relaxed properties that also ensure a global GSI level. Thus, some applications can further optimize their performance in a replicated system while obtaining GSI. © 2010 Elsevier B.V. All rights reserved.The authors wish to thank the reviewers for their valuable comments that helped us to greatly improve the quality and readability of this paper. This work has been supported by the Spanish Government under research grant TIN2009-14460-C03. Besides, the authors wish to thank the reviewers for their valuable comments that helped us to greatly improve the quality and readability of this paper.Armendáriz-Iñigo, J.; Juárez-Rodríguez, J.; González De Mendívil, J.; Garitagoitia, J.; Irún Briz, L.; Muñoz Escoí, FD. (2011). A formal characterization of SI-based ROWA replication protocols. Data and Knowledge Engineering. 70(1):21-34. doi:10.1016/j.datak.2010.07.012S213470

    Partial replication with strong consistency

    Get PDF
    In response to the increasing expectations of their clients, cloud services exploit geo-replication to provide fault-tolerance, availability and low latency when executing requests. However, cloud platforms tend to adopt weak consistency semantics, in which replicas may diverge in state independently. These systems offer good response times but at the disadvantage of allowing potential data inconsistencies that may affect user experience. Some systems propose to adopt solutions with strong consistency, which are not as efficient but simplify the development of correct applications by guaranteeing that all replicas in the system maintain the same database state. Therefore, it is interesting to explore a system that can offer strong consistency while minimizing its main disadvantage: the impact in performance that results from coordinating every replica in the system. A possible solution to reduce the cost of replica coordination is to support partial replication. Partially replicating a database allows for each server to only be responsible for a subset of the data - a partition - which means that when updating the database only some of replicas have to be synchronized, improving response times. In this dissertation, we propose an algorithm that implements a distributed replicated database that offers strong consistency with support for partial replication. To achieve strong consistency in a partially replicated scenario, our algorithm is in part based on the Clock-SI[10] research, which presents an algorithm that implements a multi-versioned database for strong consistency (snapshot-isolation) and performs the Two-Phase Commit protocol when coordinating replicas during updates. The algorithm is supported by an architecture that simplifies distributing partitions among datacenters and efficiently propagating operations across nodes in the same partition, thanks to the ChainPaxos[27] algorithm.Como forma de responder às expectativas cada vez maiores dos seus clientes, as operadoras cloud tiram partido da geo-replicação para oferecer tolerância a falhas, disponibilidade e baixa latência dos seus sistemas na resposta aos pedidos. No entanto, as plataformas cloud tendem a adotar uma semântica de consistência fraca, na qual as réplicas podem variar em estado de forma independente. Estes sistemas oferecem bons tempos de resposta mas com a desvantagem de que têm de lidar com potenciais inconsistências nos dados que podem ter impacto na experiência dos utilizadores. Alguns sistemas propõem adotar soluções com consistência forte, as quais não são tão eficientes mas simplificam o desenvolvimento de aplicações ao garantir que todas as réplicas do sistema mantêm o mesmo estado da base de dados. É então interessante explorar um sistema que garanta replicação forte mas que minimize a sua principal desvantagem: o impacto de performance no momento de coordenar o estado das réplicas nos sistema. Uma possível solução para reduzir o custo de coordenação das réplicas durante transações é o suporte à replicação parcial. Replicar parcialmente uma base de dados permite que cada servidor seja apenas responsável por uma parte dos dados - uma partição - o que significa que quando são realizadas escritas apenas algumas das réplicas têm de ser sincronizadas, melhorando os tempos de resposta. Neste trabalho propomos um algoritmo que implementa um sistema de armazenamento distríbuido replicado que oferece consistência forte com suporte a replicação parcial. A fim de garantir consistência forte num cenário de replicação parcial, o nosso algoritmo é em parte baseado no algoritmo Clock-SI[10], que implementa uma base de dados parcial com multi-versões para garantir consistência forte (snapshot-isolation) e que realiza o protocolo Two-Phase Commit para coordenar as réplicas no momento de aplicar escritas. O algoritmo é suportado por uma arquitectura que torna simples distribuir partições por vários centros de dados e propagar de forma eficiente operações entre todos os nós numa mesma partição, através do algoritmo ChainPaxos[27]

    Distributed replicated macro-components

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaIn recent years, several approaches have been proposed for improving application performance on multi-core machines. However, exploring the power of multi-core processors remains complex for most programmers. A Macro-component is an abstraction that tries to tackle this problem by allowing to explore the power of multi-core machines without requiring changes in the programs. A Macro-component encapsulates several diverse implementations of the same specification. This allows to take the best performance of all operations and/or distribute load among replicas, while keeping contention and synchronization overhead to the minimum. In real-world applications, relying on only one server to provide a service leads to limited fault-tolerance and scalability. To address this problem, it is common to replicate services in multiple machines. This work addresses the problem os supporting such replication solution, while exploring the power of multi-core machines. To this end, we propose to support the replication of Macro-components in a cluster of machines. In this dissertation we present the design of a middleware solution for achieving such goal. Using the implemented replication middleware we have successfully deployed a replicated Macro-component of in-memory databases which are known to have scalability problems in multi-core machines. The proposed solution combines multi-master replication across nodes with primary-secondary replication within a node, where several instances of the database are running on a single machine. This approach deals with the lack of scalability of databases on multi-core systems while minimizing communication costs that ultimately results in an overall improvement of the services. Results show that the proposed solution is able to scale as the number of nodes and clients increases. It also shows that the solution is able to take advantage of multi-core architectures.RepComp project (PTDC/EIAEIA/108963/2008

    Optimizing recovery protocols for replicated database systems

    Full text link
    En la actualidad, el uso de tecnologías de informacíon y sistemas de cómputo tienen una gran influencia en la vida diaria. Dentro de los sistemas informáticos actualmente en uso, son de gran relevancia los sistemas distribuidos por la capacidad que pueden tener para escalar, proporcionar soporte para la tolerancia a fallos y mejorar el desempeño de aplicaciones y proporcionar alta disponibilidad. Los sistemas replicados son un caso especial de los sistemas distribuidos. Esta tesis está centrada en el área de las bases de datos replicadas debido al uso extendido que en el presente se hace de ellas, requiriendo características como: bajos tiempos de respuesta, alto rendimiento en los procesos, balanceo de carga entre las replicas, consistencia e integridad de datos y tolerancia a fallos. En este contexto, el desarrollo de aplicaciones utilizando bases de datos replicadas presenta dificultades que pueden verse atenuadas mediante el uso de servicios de soporte a mas bajo nivel tales como servicios de comunicacion y pertenencia. El uso de los servicios proporcionados por los sistemas de comunicación de grupos permiten ocultar los detalles de las comunicaciones y facilitan el diseño de protocolos de replicación y recuperación. En esta tesis, se presenta un estudio de las alternativas y estrategias empleadas en los protocolos de replicación y recuperación en las bases de datos replicadas. También se revisan diferentes conceptos sobre los sistemas de comunicación de grupos y sincronia virtual. Se caracterizan y clasifican diferentes tipos de protocolos de replicación con respecto a la interacción o soporte que pudieran dar a la recuperación, sin embargo el enfoque se dirige a los protocolos basados en sistemas de comunicación de grupos. Debido a que los sistemas comerciales actuales permiten a los programadores y administradores de sistemas de bases de datos renunciar en alguna medida a la consistencia con la finalidad de aumentar el rendimiento, es importante determinar el nivel de consistencia necesario. En el caso de las bases de datos replicadas la consistencia está muy relacionada con el nivel de aislamiento establecido entre las transacciones. Una de las propuestas centrales de esta tesis es un protocolo de recuperación para un protocolo de replicación basado en certificación. Los protocolos de replicación de base de datos basados en certificación proveen buenas bases para el desarrollo de sus respectivos protocolos de recuperación cuando se utiliza el nivel de aislamiento snapshot. Para tal nivel de aislamiento no se requiere que los readsets sean transferidos entre las réplicas ni revisados en la fase de cetificación y ya que estos protocolos mantienen un histórico de la lista de writesets que es utilizada para certificar las transacciones, este histórico provee la información necesaria para transferir el estado perdido por la réplica en recuperación. Se hace un estudio del rendimiento del protocolo de recuperación básico y de la versión optimizada en la que se compacta la información a transferir. Se presentan los resultados obtenidos en las pruebas de la implementación del protocolo de recuperación en el middleware de soporte. La segunda propuesta esta basada en aplicar el principio de compactación de la informacion de recuperación en un protocolo de recuperación para los protocolos de replicación basados en votación débil. El objetivo es minimizar el tiempo necesario para transfeir y aplicar la información perdida por la réplica en recuperación obteniendo con esto un protocolo de recuperación mas eficiente. Se ha verificado el buen desempeño de este algoritmo a través de una simulación. Para efectuar la simulación se ha hecho uso del entorno de simulación Omnet++. En los resultados de los experimentos puede apreciarse que este protocolo de recuperación tiene buenos resultados en múltiples escenarios. Finalmente, se presenta la verificación de la corrección de ambos algoritmos de recuperación en el Capítulo 5.Nowadays, information technology and computing systems have a great relevance on our lives. Among current computer systems, distributed systems are one of the most important because of their scalability, fault tolerance, performance improvements and high availability. Replicated systems are a specific case of distributed system. This Ph.D. thesis is centered in the replicated database field due to their extended usage, requiring among other properties: low response times, high throughput, load balancing among replicas, data consistency, data integrity and fault tolerance. In this scope, the development of applications that use replicated databases raises some problems that can be reduced using other fault-tolerant building blocks, as group communication and membership services. Thus, the usage of the services provided by group communication systems (GCS) hides several communication details, simplifying the design of replication and recovery protocols. This Ph.D. thesis surveys the alternatives and strategies being used in the replication and recovery protocols for database replication systems. It also summarizes different concepts about group communication systems and virtual synchrony. As a result, the thesis provides a classification of database replication protocols according to their support to (and interaction with) recovery protocols, always assuming that both kinds of protocol rely on a GCS. Since current commercial DBMSs allow that programmers and database administrators sacrifice consistency with the aim of improving performance, it is important to select the appropriate level of consistency. Regarding (replicated) databases, consistency is strongly related to the isolation levels being assigned to transactions. One of the main proposals of this thesis is a recovery protocol for a replication protocol based on certification. Certification-based database replication protocols provide a good basis for the development of their recovery strategies when a snapshot isolation level is assumed. In that level readsets are not needed in the validation step. As a result, they do not need to be transmitted to other replicas. Additionally, these protocols hold a writeset list that is used in the certification/validation step. That list maintains the set of writesets needed by the recovery protocol. This thesis evaluates the performance of a recovery protocol based on the writeset list tranfer (basic protocol) and of an optimized version that compacts the information to be transferred. The second proposal applies the compaction principle to a recovery protocol designed for weak-voting replication protocols. Its aim is to minimize the time needed for transferring and applying the writesets lost by the recovering replica, obtaining in this way an efficient recovery. The performance of this recovery algorithm has been checked implementing a simulator. To this end, the Omnet++ simulating framework has been used. The simulation results confirm that this recovery protocol provides good results in multiple scenarios. Finally, the correction of both recovery protocols is also justified and presented in Chapter 5.García Muñoz, LH. (2013). Optimizing recovery protocols for replicated database systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31632TESI
    corecore