23,594 research outputs found

    Simulated evaluation of faceted browsing based on feature selection

    Get PDF
    In this paper we explore the limitations of facet based browsing which uses sub-needs of an information need for querying and organising the search process in video retrieval. The underlying assumption of this approach is that the search effectiveness will be enhanced if such an approach is employed for interactive video retrieval using textual and visual features. We explore the performance bounds of a faceted system by carrying out a simulated user evaluation on TRECVid data sets, and also on the logs of a prior user experiment with the system. We first present a methodology to reduce the dimensionality of features by selecting the most important ones. Then, we discuss the simulated evaluation strategies employed in our evaluation and the effect on the use of both textual and visual features. Facets created by users are simulated by clustering video shots using textual and visual features. The experimental results of our study demonstrate that the faceted browser can potentially improve the search effectiveness

    Optimising Trade-offs Among Stakeholders in Ad Auctions

    Full text link
    We examine trade-offs among stakeholders in ad auctions. Our metrics are the revenue for the utility of the auctioneer, the number of clicks for the utility of the users and the welfare for the utility of the advertisers. We show how to optimize linear combinations of the stakeholder utilities, showing that these can be tackled through a GSP auction with a per-click reserve price. We then examine constrained optimization of stakeholder utilities. We use simulations and analysis of real-world sponsored search auction data to demonstrate the feasible trade-offs, examining the effect of changing the allowed number of ads on the utilities of the stakeholders. We investigate both short term effects, when the players do not have the time to modify their behavior, and long term equilibrium conditions. Finally, we examine a combinatorially richer constrained optimization problem, where there are several possible allowed configurations (templates) of ad formats. This model captures richer ad formats, which allow using the available screen real estate in various ways. We show that two natural generalizations of the GSP auction rules to this domain are poorly behaved, resulting in not having a symmetric Nash equilibrium or having one with poor welfare. We also provide positive results for restricted cases.Comment: 18 pages, 10 figures, ACM Conference on Economics and Computation 201

    ICE: Enabling Non-Experts to Build Models Interactively for Large-Scale Lopsided Problems

    Full text link
    Quick interaction between a human teacher and a learning machine presents numerous benefits and challenges when working with web-scale data. The human teacher guides the machine towards accomplishing the task of interest. The learning machine leverages big data to find examples that maximize the training value of its interaction with the teacher. When the teacher is restricted to labeling examples selected by the machine, this problem is an instance of active learning. When the teacher can provide additional information to the machine (e.g., suggestions on what examples or predictive features should be used) as the learning task progresses, then the problem becomes one of interactive learning. To accommodate the two-way communication channel needed for efficient interactive learning, the teacher and the machine need an environment that supports an interaction language. The machine can access, process, and summarize more examples than the teacher can see in a lifetime. Based on the machine's output, the teacher can revise the definition of the task or make it more precise. Both the teacher and the machine continuously learn and benefit from the interaction. We have built a platform to (1) produce valuable and deployable models and (2) support research on both the machine learning and user interface challenges of the interactive learning problem. The platform relies on a dedicated, low-latency, distributed, in-memory architecture that allows us to construct web-scale learning machines with quick interaction speed. The purpose of this paper is to describe this architecture and demonstrate how it supports our research efforts. Preliminary results are presented as illustrations of the architecture but are not the primary focus of the paper

    ARTSCENE: A Neural System for Natural Scene Classification

    Full text link
    How do humans rapidly recognize a scene? How can neural models capture this biological competence to achieve state-of-the-art scene classification? The ARTSCENE neural system classifies natural scene photographs by using multiple spatial scales to efficiently accumulate evidence for gist and texture. ARTSCENE embodies a coarse-to-fine Texture Size Ranking Principle whereby spatial attention processes multiple scales of scenic information, ranging from global gist to local properties of textures. The model can incrementally learn and predict scene identity by gist information alone and can improve performance through selective attention to scenic textures of progressively smaller size. ARTSCENE discriminates 4 landscape scene categories (coast, forest, mountain and countryside) with up to 91.58% correct on a test set, outperforms alternative models in the literature which use biologically implausible computations, and outperforms component systems that use either gist or texture information alone. Model simulations also show that adjacent textures form higher-order features that are also informative for scene recognition.National Science Foundation (NSF SBE-0354378); Office of Naval Research (N00014-01-1-0624
    • …
    corecore