6,639 research outputs found

    High quality testing of grid style power gating

    No full text
    This paper shows that existing delay-based testing techniques for power gating exhibit fault coverage loss due to unconsidered delays introduced by the structure of the virtual voltage power-distribution-network (VPDN). To restore this loss, which could reach up to 70.3% on stuck-open faults, we propose a design-for-testability (DFT) logic that considers the impact of VPDN on fault coverage in order to constitute the proper interface between the VPDN and the DFT. The proposed logic can be easily implemented on-top of existing DFT solutions and its overhead is optimized by an algorithm that offers trade-off flexibility between test-application-time and hardware overhead. Through physical layout SPICE simulations, we show complete fault coverage recovery on stuck-open faults and 43.2% test-application-time improvement compared to a previously proposed DFT technique. To the best of our knowledge, this paper presents the first analysis of the VPDN impact on test qualit

    Diseño de circuitos analógicos y de señal mixta con consideraciones de diseño físico y variabilidad

    Get PDF
    Advances in microelectronic technology has been based on an increasing capacity to integrate transistors, moving this industry to the nanoelectronics realm in recent years. Moore’s Law [1] has predicted (and somehow governed) the growth of the capacity to integrate transistors in a single IC. Nevertheless, while this capacity has grown steadily, the increasing number of design tasks that are involved in the creation of the integrated circuit and their complexity has led to a phenomenon known as the ``design gap´´. This is the difference between what can theoretically be integrated and what can practically be designed. Since the early 2000s, the International Technology Roadmap of Semiconductors (ITRS) reports, published by the Semiconductor Industry Association (SIA), alert about the necessity to limit the growth of the design cost by increasing the productivity of the designer to continue the semiconductor industry’s growth. Design automation arises as a key element to close this ”design gap”. In this sense, electronic design automation (EDA) tools have reached a level of maturity for digital circuits that is far behind the EDA tools that are made for analog circuit design automation. While digital circuits rely, in general, on two stable operation states (which brings inherent robustness against numerous imperfections and interferences, leading to few design constraints like area, speed or power consumption), analog signal processing, on the other hand, demands compliance with lots of constraints (e.g., matching, noise, robustness, ...). The triumph of digital CMOS circuits, thanks to their mentioned robustness, has, ultimately, facilitated the way that circuits can be processed by algorithms, abstraction levels and description languages, as well as how the design information traverse the hierarchical levels of a digital system. The field of analog design automation faces many more difficulties due to the many sources of perturbation, such as the well-know process variability, and the difficulty in treating these systematically, like digital tools can do. In this Thesis, different design flows are proposed, focusing on new design methodologies for analog circuits, thus, trying to close the ”gap” between digital and analog EDA tools. In this chapter, the most important sources for perturbations and their impact on the analog design process are discussed in Section 1.2. The traditional analog design flow is discussed in 1.3. Emerging design methodologies that try to reduce the ”design gap” are presented in Section 1.4 where the key concept of Pareto-Optimal Front (POF) is explained. This concept, brought from the field of economics, models the analog circuit performances into a set of solutions that show the optimal trade-offs among conflicting circuit performances (e.g. DC-gain and unity-gain frequency). Finally, the goals of this thesis are presented in Section 1.5

    Ultra-low Voltage Digital Circuits and Extreme Temperature Electronics Design

    Get PDF
    Certain applications require digital electronics to operate under extreme conditions e.g., large swings in ambient temperature, very low supply voltage, high radiation. Such applications include sensor networks, wearable electronics, unmanned aerial vehicles, spacecraft, and energyharvesting systems. This dissertation splits into two projects that study digital electronics supplied by ultra-low voltages and build an electronic system for extreme temperatures. The first project introduces techniques that improve circuit reliability at deep subthreshold voltages as well as determine the minimum required supply voltage. These techniques address digital electronic design at several levels: the physical process, gate design, and system architecture. This dissertation analyzes a silicon-on-insulator process, Schmitt-trigger gate design, and asynchronous logic at supply voltages lower than 100 millivolts. The second project describes construction of a sensor digital controller for the lunar environment. Parts of the digital controller are an asynchronous 8031 microprocessor that is compatible with synchronous logic, memory with error detection and correction, and a robust network interface. The digitial sensor ASIC is fabricated on a silicon-germanium process and built with cells optimized for extreme temperatures

    Fast and Robust Design of CMOS VCO for Optimal Performance

    Get PDF
    The exponentially growing design complexity with technological advancement calls for a large scope in the analog and mixed signal integrated circuit design automation. In the automation process, performance optimization under different environmental constraints is of prime importance. The analog integrated circuits design strongly requires addressing multiple competing performance objectives for optimization with ability to find global solutions in a constrained environment. The integrated circuit (IC) performances are significantly affected by the device, interconnect and package parasitics. Inclusion of circuit parasitics in the design phase along with performance optimization has become a bare necessity for faster prototyping. Besides this, the fabrication process variations have a predominant effect on the circuit performance, which is directly linked to the acceptability of manufactured integrated circuit chips. This necessitates a manufacturing process tolerant design. The development of analog IC design methods exploiting the computational intelligence of evolutionary techniques for optimization, integrating the circuit parasitic in the design optimization process in a more meaningful way and developing process fluctuation tolerant optimal design is the central theme of this thesis. Evolutionary computing multi-objective optimization techniques such as Non-dominated Sorting Genetic Algorithm-II and Infeasibility Driven Evolutionary Algorithm are used in this thesis for the development of parasitic aware design techniques for analog ICs. The realistic physical and process constraints are integrated in the proposed design technique. A fast design methodology based on one of the efficient optimization technique is developed and an extensive worst case process variation analysis is performed. This work also presents a novel process corner variation aware analog IC design methodology, which would effectively increase the yield of chips in the acceptable performance window. The performance of all the presented techniques is demonstrated through the application to CMOS ring oscillators, current starved and xi differential voltage controlled oscillators, designed in Cadence Virtuoso Analog Design Environment

    ポータビリティを意識したCMOSミックスドシグナルVLSI回路設計手法に関する研究

    Get PDF
    本研究は、半導体上に集積されたアナログ・ディジタル・メモリ回路から構成されるミクストシグナルシステムを別の製造プロセスへ移行することをポーティングとして定義し、効率的なポーティングを行うための設計方式と自動回路合成アルゴリズムを提案し、いくつかの典型的な回路に対する設計事例を示し、提案手法の妥当性を立証している。北九州市立大

    Layout regularity metric as a fast indicator of process variations

    Get PDF
    Integrated circuits design faces increasing challenge as we scale down due to the increase of the effect of sensitivity to process variations. Systematic variations induced by different steps in the lithography process affect both parametric and functional yields of the designs. These variations are known, themselves, to be affected by layout topologies. Design for Manufacturability (DFM) aims at defining techniques that mitigate variations and improve yield. Layout regularity is one of the trending techniques suggested by DFM to mitigate process variations effect. There are several solutions to create regular designs, like restricted design rules and regular fabrics. These regular solutions raised the need for a regularity metric. Metrics in literature are insufficient for different reasons; either because they are qualitative or computationally intensive. Furthermore, there is no study relating either lithography or electrical variations to layout regularity. In this work, layout regularity is studied in details and a new geometrical-based layout regularity metric is derived. This metric is verified against lithographic simulations and shows good correlation. Calculation of the metric takes only few minutes on 1mm x 1mm design, which is considered fast compared to the time taken by simulations. This makes it a good candidate for pre-processing the layout data and selecting certain areas of interest for lithographic simulations for faster throughput. The layout regularity metric is also compared against a model that measures electrical variations due to systematic lithographic variations. The validity of using the regularity metric to flag circuits that have high variability using the developed electrical variations model is shown. The regularity metric results compared to the electrical variability model results show matching percentage that can reach 80%, which means that this metric can be used as a fast indicator of designs more susceptible to lithography and hence electrical variations

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels
    corecore