539 research outputs found

    Generic radiation hardened photodiode layouts for deep submicron CMOS image sensor processes

    Get PDF
    Selected radiation hardened photodiode layouts, manufactured in a deep submicron CMOS Image Sensor technology, are irradiated by 60Co gamma-rays up to 2.2 Mrad(SiO2) and studied in order to identify the most efficient structures and the guidelines (recess distance, bias voltage) to follow to make them work efficiently in such technology. To do so, both photodiode arrays and active pixel sensors are used. After 2.2 Mrad(SiO2), the studied sensors are fully functional and most of the radiation hardened photodiodes exhibit radiation induced dark current values more than one order of magnitude lower than the standard photodiode

    Overview of ionizing radiation effects in image sensors fabricated in a deep-submicrometer CMOS imaging technology

    Get PDF
    An overview of ionizing radiation effects in imagers manufactured in a 0.18-μm CMOS image sensor technology is presented. Fourteen types of image sensors are characterized and irradiated by a 60Co source up to 5 kGy. The differences between these 14 designs allow us to separately estimate the effect of ionizing radiation on microlenses, on low- and zero-threshold-voltage MOSFETs and on several pixel layouts using P+ guard-rings and edgeless transistors. After irradiation, wavelength dependent responsivity drops are observed. All the sensors exhibit a large dark current increase attributed to the shallow trench isolation that surrounds the photodiodes. Saturation voltage rises and readout chain gain variations are also reported. Finally, the radiation hardening perspectives resulting from this paper are discussed

    Radiation damages in CMOS image sensors: testing and hardening challenges brought by deep sub-micrometer CIS processes

    Get PDF
    This paper presents a summary of the main results we observed after several years of study on irradiated custom imagers manufactured using 0,18 µm CMOS processes dedicated to imaging. These results are compared to irradiated commercial sensor test results provided by the Jet Propulsion Laboratory to enlighten the differences between standard and pinned photodiode behaviors. Several types of energetic particles have been used (gamma rays, X-rays, protons and neutrons) to irradiate the studied devices. Both total ionizing dose (TID) and displacement damage effects are reported. The most sensitive parameter is still the dark current but some quantum eficiency and MOSFET characteristics changes were also observed at higher dose than those of interest for space applications. In all these degradations, the trench isolations play an important role. The consequences on radiation testing for space applications and radiation-hardening-by-design techniques are also discussed

    Ionizing radiation effects on CMOS imagers manufactured in deep submicron process

    Get PDF
    We present here a study on both CMOS sensors and elementary structures (photodiodes and in-pixel MOSFETs) manufactured in a deep submicron process dedicated to imaging. We designed a test chip made of one 128×128-3T-pixel array with 10 µm pitch and more than 120 isolated test structures including photodiodes and MOSFETs with various implants and different sizes. All these devices were exposed to ionizing radiation up to 100 krad and their responses were correlated to identify the CMOS sensor weaknesses. Characterizations in darkness and under illumination demonstrated that dark current increase is the major sensor degradation. Shallow trench isolation was identified to be responsible for this degradation as it increases the number of generation centers in photodiode depletion regions. Consequences on hardness assurance and hardening-by-design are discussed

    Total dose evaluation of deep submicron CMOS imaging technology through elementary device and pixel array behavior analysis

    Get PDF
    Ionizing radiation effects on CMOS image sensors (CIS) manufactured using a 0.18 µm imaging technology are presented through the behavior analysis of elementary structures, such as field oxide FET, gated diodes, photodiodes and MOSFETs. Oxide characterizations appear necessary to understand ionizing dose effects on devices and then on image sensors. The main degradations observed are photodiode dark current increases (caused by a generation current enhancement), minimum size NMOSFET off-state current rises and minimum size PMOSFET radiation induced narrow channel effects. All these effects are attributed to the shallow trench isolation degradation which appears much more sensitive to ionizing radiation than inter layer dielectrics. Unusual post annealing effects are reported in these thick oxides. Finally, the consequences on sensor design are discussed thanks to an irradiated pixel array and a comparison with previous work is discussed

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy

    Identification of radiation induced dark current sources in pinned photodiode CMOS image sensors

    Get PDF
    This paper presents an investigation of Total Ionizing Dose induced dark current sources in Pinned PhotoDiodes (PPD) CMOS Image Sensors based on pixel design variations. The influence of several layout parameters is studied. Only one parameter is changed at a time enabling the direct evaluation of its contribution to the observed device degradation. By this approach, the origin of radiation induced dark current in PPD is localized on the pixel layout. The PPD peripheral STI does not seem to play a role in the degradation. The PPD area and an additional contribution independent on the pixel dimensions appear to be the main sources of the TID induced dark current increase

    Overview of CMOS process and design options for image sensor dedicated to space applications

    Get PDF
    With the growth of huge volume markets (mobile phones, digital cameras…) CMOS technologies for image sensor improve significantly. New process flows appear in order to optimize some parameters such as quantum efficiency, dark current, and conversion gain. Space applications can of course benefit from these improvements. To illustrate this evolution, this paper reports results from three technologies that have been evaluated with test vehicles composed of several sub arrays designed with some space applications as target. These three technologies are CMOS standard, improved and sensor optimized process in 0.35µm generation. Measurements are focussed on quantum efficiency, dark current, conversion gain and noise. Other measurements such as Modulation Transfer Function (MTF) and crosstalk are depicted in [1]. A comparison between results has been done and three categories of CMOS process for image sensors have been listed. Radiation tolerance has been also studied for the CMOS improved process in the way of hardening the imager by design. Results at 4, 15, 25 and 50 krad prove a good ionizing dose radiation tolerance applying specific techniques

    Analysis of total dose-induced dark current in CMOS image sensors from interface state and trapped charge density measurements

    Get PDF
    The origin of total ionizing dose induced dark current in CMOS image sensors is investigated by comparing dark current measurements to interface state density and trapped charge density measurements. Two types of photodiode and several thick-oxide-FETs were manufactured using a 0.18-µm CMOS image sensor process and exposed to 10-keV X-ray from 3 krad to 1 Mrad. It is shown that the radiation induced trapped charge extends the space charge region at the oxide interface, leading to an enhancement of interface state SRH generation current. Isochronal annealing tests show that STI interface states anneal out at temperature lower than 100°C whereas about a third of the trapped charge remains after 30 min at 300°C

    Radiation Effects in Pinned Photodiode CMOS Image Sensors: Pixel Performance Degradation Due to Total Ionizing Dose

    Get PDF
    Several Pinned Photodiode (PPD) CMOS Image Sensors (CIS) are designed, manufactured, characterized and exposed biased to ionizing radiation up to 10 kGy(SiO2 ). In addition to the usually reported dark current increase and quantum efficiency drop at short wavelengths, several original radiation effects are shown: an increase of the pinning voltage, a decrease of the buried photodiode full well capacity, a large change in charge transfer efficiency, the creation of a large number of Total Ionizing Dose (TID) induced Dark Current Random Telegraph Signal (DC-RTS) centers active in the photodiode (even when the Transfer Gate (TG) is accumulated) and the complete depletion of the Pre-Metal Dielectric (PMD) interface at the highest TID leading to a large dark current and the loss of control of the TG on the dark current. The proposed mechanisms at the origin of these degradations are discussed. It is also demonstrated that biasing (i.e., operating) the PPD CIS during irradiation does not enhance the degradations compared to sensors grounded during irradiation
    corecore