1,085 research outputs found

    OPTIMAL AREA AND PERFORMANCE MAPPING OF K-LUT BASED FPGAS

    Get PDF
    FPGA circuits are increasingly used in many fields: for rapid prototyping of new products (including fast ASIC implementation), for logic emulation, for producing a small number of a device, or if a device should be reconfigurable in use (reconfigurable computing). Determining if an arbitrary, given wide, function can be implemented by a programmable logic block, unfortunately, it is generally, a very difficult problem. This problem is called the Boolean matching problem. This paper introduces a new implemented algorithm able to map, both for area and performance, combinational networks using k-LUT based FPGAs.k-LUT based FPGAs, combinational circuits, performance-driven mapping.

    OpenPARF: An Open-Source Placement and Routing Framework for Large-Scale Heterogeneous FPGAs with Deep Learning Toolkit

    Full text link
    This paper proposes OpenPARF, an open-source placement and routing framework for large-scale FPGA designs. OpenPARF is implemented with the deep learning toolkit PyTorch and supports massive parallelization on GPU. The framework proposes a novel asymmetric multi-electrostatic field system to solve FPGA placement. It considers fine-grained routing resources inside configurable logic blocks (CLBs) for FPGA routing and supports large-scale irregular routing resource graphs. Experimental results on ISPD 2016 and ISPD 2017 FPGA contest benchmarks and industrial benchmarks demonstrate that OpenPARF can achieve 0.4-12.7% improvement in routed wirelength and more than 2×2\times speedup in placement. We believe that OpenPARF can pave the road for developing FPGA physical design engines and stimulate further research on related topics

    OPTIMIZING LARGE COMBINATIONAL NETWORKS FOR K-LUT BASED FPGA MAPPING

    Get PDF
    Optimizing by partitioning is a central problem in VLSI design automation, addressing circuit’s manufacturability. Circuit partitioning has multiple applications in VLSI design. One of the most common is that of dividing combinational circuits (usually large ones) that will not fit on a single package among a number of packages. Partitioning is of practical importance for k-LUT based FPGA circuit implementation. In this work is presented multilevel a multi-resource partitioning algorithm for partitioning large combinational circuits in order to efficiently use existing and commercially available FPGAs packagestwo-way partitioning, multi-way partitioning, recursive partitioning, flat partitioning, critical path, cutting cones, bottom-up clusters, top-down min-cut

    Placement-Driven Technology Mapping for LUT-Based FPGAs

    Get PDF
    In this paper, we study the problem of placement-driven technology mapping for table-lookup based FPGA architectures to optimize circuit performance. Early work on technology mapping for FPGAs such as Chortle-d[14] and Flowmap[3] aim to optimize the depth of the mapped solution without consideration of interconnect delay. Later works such as Flowmap-d[7], Bias-Clus[4] and EdgeMap consider interconnect delays during mapping, but do not take into consideration the effects of their mapping solution on the final placement. Our work focuses on the interaction between the mapping and placement stages. First, the interconnect delay information is estimated from the placement, and used during the labeling process. A placement-based mapping solution which considers both global cell congestion and local cell congestion is then developed. Finally, a legalization step and detailed placement is performed to realize the design. We have implemented our algorithm in a LUT based FPGA technology mapping package named PDM (Placement-Driven Mapping) and tested the implementation on a set of MCNC benchmarks. We use the tool VPR[1][2] for placement and routing of the mapped netlist. Experimental results show the longest path delay on a set of large MCNC benchmarks decreased by 12.3 % on the average

    Optimal simultaneous mapping and clustering for FPGA delay optimization

    Get PDF

    Adaptive Lightweight Compression Acceleration on Hybrid CPU-FPGA System

    Get PDF

    Two-dimensional placement compaction using an evolutionary approach: a study

    Get PDF
    The placement problem of two-dimensional objects over planar surfaces optimizing given utility functions is a combinatorial optimization problem. Our main drive is that of surveying genetic algorithms and hybrid metaheuristics in terms of final positioning area compaction of the solution. Furthermore, a new hybrid evolutionary approach, combining a genetic algorithm merged with a non-linear compaction method is introduced and compared with referenced literature heuristics using both randomly generated instances and benchmark problems. A wide variety of experiments is made, and the respective results and discussions are presented. Finally, conclusions are drawn, and future research is defined

    New FPGA design tools and architectures

    Get PDF
    • …
    corecore