175 research outputs found

    Bridging the Gap Between Layout Pattern Sampling and Hotspot Detection via Batch Active Learning

    Full text link
    Layout hotpot detection is one of the main steps in modern VLSI design. A typical hotspot detection flow is extremely time consuming due to the computationally expensive mask optimization and lithographic simulation. Recent researches try to facilitate the procedure with a reduced flow including feature extraction, training set generation and hotspot detection, where feature extraction methods and hotspot detection engines are deeply studied. However, the performance of hotspot detectors relies highly on the quality of reference layout libraries which are costly to obtain and usually predetermined or randomly sampled in previous works. In this paper, we propose an active learning-based layout pattern sampling and hotspot detection flow, which simultaneously optimizes the machine learning model and the training set that aims to achieve similar or better hotspot detection performance with much smaller number of training instances. Experimental results show that our proposed method can significantly reduce lithography simulation overhead while attaining satisfactory detection accuracy on designs under both DUV and EUV lithography technologies.Comment: 8 pages, 7 figure

    Automatic Layout Generation with Applications in Machine Learning Engine Evaluation

    Full text link
    Machine learning-based lithography hotspot detection has been deeply studied recently, from varies feature extraction techniques to efficient learning models. It has been observed that such machine learning-based frameworks are providing satisfactory metal layer hotspot prediction results on known public metal layer benchmarks. In this work, we seek to evaluate how these machine learning-based hotspot detectors generalize to complicated patterns. We first introduce a automatic layout generation tool that can synthesize varies layout patterns given a set of design rules. The tool currently supports both metal layer and via layer generation. As a case study, we conduct hotspot detection on the generated via layer layouts with representative machine learning-based hotspot detectors, which shows that continuous study on model robustness and generality is necessary to prototype and integrate the learning engines in DFM flows. The source code of the layout generation tool will be available at https://github. com/phdyang007/layout-generation.Comment: 6 pages, submitted to 1st ACM/IEEE Workshop on Machine Learning for CAD (MLCAD) for revie

    VLSI Mask Optimization: From Shallow To Deep Learning

    Full text link
    VLSI mask optimization is one of the most critical stages in manufacturability aware design, which is costly due to the complicated mask optimization and lithography simulation. Recent researches have shown prominent advantages of machine learning techniques dealing with complicated and big data problems, which bring potential of dedicated machine learning solution for DFM problems and facilitate the VLSI design cycle. In this paper, we focus on a heterogeneous OPC framework that assists mask layout optimization. Preliminary results show the efficiency and effectiveness of proposed frameworks that have the potential to be alternatives to existing EDA solutions.Comment: 6 pages; accepted by 25th Asia and South Pacific Design Automation Conference (ASP-DAC 2020

    On Improving Hotspot Detection Through Synthetic Pattern-Based Database Enhancement

    Full text link
    Continuous technology scaling and the introduction of advanced technology nodes in Integrated Circuit (IC) fabrication is constantly exposing new manufacturability issues. One such issue, stemming from complex interaction between design and process, is the problem of design hotspots. Such hotspots are known to vary from design to design and, ideally, should be predicted early and corrected in the design stage itself, as opposed to relying on the foundry to develop process fixes for every hotspot, which would be intractable. In the past, various efforts have been made to address this issue by using a known database of hotspots as the source of information. The majority of these efforts use either Machine Learning (ML) or Pattern Matching (PM) techniques to identify and predict hotspots in new incoming designs. However, almost all of them suffer from high false-alarm rates, mainly because they are oblivious to the root causes of hotspots. In this work, we seek to address this limitation by using a novel database enhancement approach through synthetic pattern generation based on carefully crafted Design of Experiments (DOEs). Effectiveness of the proposed method against the state-of-the-art is evaluated on a 45nm process using industry-standard tools and designs

    Data Efficient Lithography Modeling with Transfer Learning and Active Data Selection

    Full text link
    Lithography simulation is one of the key steps in physical verification, enabled by the substantial optical and resist models. A resist model bridges the aerial image simulation to printed patterns. While the effectiveness of learning-based solutions for resist modeling has been demonstrated, they are considerably data-demanding. Meanwhile, a set of manufactured data for a specific lithography configuration is only valid for the training of one single model, indicating low data efficiency. Due to the complexity of the manufacturing process, obtaining enough data for acceptable accuracy becomes very expensive in terms of both time and cost, especially during the evolution of technology generations when the design space is intensively explored. In this work, we propose a new resist modeling framework for contact layers, utilizing existing data from old technology nodes and active selection of data in a target technology node, to reduce the amount of data required from the target lithography configuration. Our framework based on transfer learning and active learning techniques is effective within a competitive range of accuracy, i.e., 3-10X reduction on the amount of training data with comparable accuracy to the state-of-the-art learning approach

    An Automated System for Checking Lithography Friendliness of Standard Cells

    Full text link
    At advanced process nodes, lithography weakpoints can exist in physical layouts of integrated circuit designs even if the layouts pass design rule checking (DRC). Existence of lithography weakpoints in a physical layout can cause manufacturability issues, which in turn can result in yield losses. In our experiments, we have found that specific standard cells have tendencies to create lithography weakpoints after their cell instances are placed and routed, even though each of these cells does not contain any lithography weakpoint before performing placement and routing. In addition, our experiments have shown that abutted standard cell instances can induce lithography weakpoints. Therefore, in this paper, we propose methodologies that are used in a novel software system for checking standard cells in terms of the aforementioned lithography issues. Specifically, the software system is capable of detecting and sorting problematic standard cells which are prone to generate lithography weakpoints, as well as reporting standard cells that should not be abutted. Methodologies proposed in this paper allow us to reduce or even prevent the generation of undesirable lithography weakpoints during the physical synthesis phase of designing a digital integrated circuit

    Painting on Placement: Forecasting Routing Congestion using Conditional Generative Adversarial Nets

    Full text link
    Physical design process commonly consumes hours to days for large designs, and routing is known as the most critical step. Demands for accurate routing quality prediction raise to a new level to accelerate hardware innovation with advanced technology nodes. This work presents an approach that forecasts the density of all routing channels over the entire floorplan, with features collected up to placement, using conditional GANs. Specifically, forecasting the routing congestion is constructed as an image translation (colorization) problem. The proposed approach is applied to a) placement exploration for minimum congestion, b) constrained placement exploration and c) forecasting congestion in real-time during incremental placement, using eight designs targeting a fixed FPGA architecture.Comment: 6 pages, 9 figures, to appear at DAC'1

    Are Adversarial Perturbations a Showstopper for ML-Based CAD? A Case Study on CNN-Based Lithographic Hotspot Detection

    Full text link
    There is substantial interest in the use of machine learning (ML) based techniques throughout the electronic computer-aided design (CAD) flow, particularly those based on deep learning. However, while deep learning methods have surpassed state-of-the-art performance in several applications, they have exhibited intrinsic susceptibility to adversarial perturbations --- small but deliberate alterations to the input of a neural network, precipitating incorrect predictions. In this paper, we seek to investigate whether adversarial perturbations pose risks to ML-based CAD tools, and if so, how these risks can be mitigated. To this end, we use a motivating case study of lithographic hotspot detection, for which convolutional neural networks (CNN) have shown great promise. In this context, we show the first adversarial perturbation attacks on state-of-the-art CNN-based hotspot detectors; specifically, we show that small (on average 0.5% modified area), functionality preserving and design-constraint satisfying changes to a layout can nonetheless trick a CNN-based hotspot detector into predicting the modified layout as hotspot free (with up to 99.7% success). We propose an adversarial retraining strategy to improve the robustness of CNN-based hotspot detection and show that this strategy significantly improves robustness (by a factor of ~3) against adversarial attacks without compromising classification accuracy

    Machine Learning for Electronic Design Automation: A Survey

    Full text link
    With the down-scaling of CMOS technology, the design complexity of very large-scale integrated (VLSI) is increasing. Although the application of machine learning (ML) techniques in electronic design automation (EDA) can trace its history back to the 90s, the recent breakthrough of ML and the increasing complexity of EDA tasks have aroused more interests in incorporating ML to solve EDA tasks. In this paper, we present a comprehensive review of existing ML for EDA studies, organized following the EDA hierarchy.Comment: Accepted by TODAES. The first 10 authors are ordered alphabeticall

    Bias Busters: Robustifying DL-based Lithographic Hotspot Detectors Against Backdooring Attacks

    Full text link
    Deep learning (DL) offers potential improvements throughout the CAD tool-flow, one promising application being lithographic hotspot detection. However, DL techniques have been shown to be especially vulnerable to inference and training time adversarial attacks. Recent work has demonstrated that a small fraction of malicious physical designers can stealthily "backdoor" a DL-based hotspot detector during its training phase such that it accurately classifies regular layout clips but predicts hotspots containing a specially crafted trigger shape as non-hotspots. We propose a novel training data augmentation strategy as a powerful defense against such backdooring attacks. The defense works by eliminating the intentional biases introduced in the training data but does not require knowledge of which training samples are poisoned or the nature of the backdoor trigger. Our results show that the defense can drastically reduce the attack success rate from 84% to ~0%
    corecore